Suppr超能文献

P450(NOR)催化还原NO过程中的同位素效应和中间体

Isotope effects and intermediates in the reduction of NO by P450(NOR).

作者信息

Daiber A, Nauser T, Takaya N, Kudo T, Weber P, Hultschig C, Shoun H, Ullrich V

机构信息

Department of Biology, University of Konstanz, Konstanz, Germany

出版信息

J Inorg Biochem. 2002 Feb;88(3-4):343-52. doi: 10.1016/s0162-0134(01)00386-5.

Abstract

The mechanism of the heme-thiolate-dependent NADH-NO reductase (P450(NOR)) from Fusarium oxysporum was investigated by kinetic isotope effects including protio, [4S-2H]-, [4R-2H]-, [4,4(2)H(2)]-NADH and stopped-flow measurements. The respective kinetic isotope effects were measured at high NO concentrations and were found to be 1.7, 2.3 and 3.8 indicating a rate-limitation at the reduction step and a moderate stereoselectivity in binding of the cofactor NADH. In a different approach the kinetic isotope effects were determined directly for the reaction of the Fe(III)-NO complex with [4R-2H]- and [4S-2H]-NADH by stopped-flow spectroscopy. The resulting isotope effects were 2.7+/-0.4 for the R-form and 1.1+/-0.1 for the S-form. In addition the 444 nm intermediate could be chemically generated by addition of an ethanolic borohydride solution to the ferric-NO complex at -10 degrees C. In pulse radiolysis experiments a similar absorbing species could be observed when hydroxylamine radicals were generated in the presence of Fe (III) P450(NOR). Based on these results we postulate hydride transfer from NADH to the ferric P450-NO complex resulting in a ferric hydroxylamine-radical or ferryl hydroxylamine-complex and this step, as indicated by the kinetic isotope effects, to be rate-limiting at high concentrations of NO. However, at low concentrations of NO the decay of the 444 nm species becomes the rate-limiting step as envisaged by stopped-flow and optical kinetic measurements in a system in which NO was continuously generated. The last step in the catalytic cycle may proceed by a direct addition of the NO radical to the Fe-hydroxylamine complex or by electron transfer from the NO radical to the ferric-thiyl moiety in analogy to the postulated mechanisms of prostacyclin and thromboxane biosynthesis by the corresponding P450 enzymes. The latter process of electron transfer could then constitute a common step in all heme-thiolate catalyzed reactions.

摘要

通过动力学同位素效应,包括使用普通氢、[4S-2H]-、[4R-2H]-、[4,4-(2)H(2)]-NADH以及停流测量,对尖孢镰刀菌中血红素硫醇盐依赖性NADH-NO还原酶(P450(NOR))的机制进行了研究。在高NO浓度下测量了各自的动力学同位素效应,发现分别为1.7、2.3和3.8,这表明还原步骤存在速率限制,并且辅因子NADH的结合具有适度的立体选择性。采用不同的方法,通过停流光谱法直接测定了Fe(III)-NO配合物与[4R-2H]-和[4S-2H]-NADH反应的动力学同位素效应。R型的同位素效应为2.7±0.4,S型为1.1±0.1。此外,在-10℃下向铁-NO配合物中加入乙醇硼氢化钠溶液,可以化学生成444nm中间体。在脉冲辐解实验中,当在Fe(III) P450(NOR)存在下产生羟胺自由基时,可以观察到类似的吸收物种。基于这些结果,我们推测氢化物从NADH转移到铁P450-NO配合物上,产生铁羟胺自由基或高铁羟胺配合物,并且如动力学同位素效应所示,这一步骤在高浓度NO时是速率限制步骤。然而,在低浓度NO时,如在一个连续产生NO的系统中通过停流和光动力学测量所设想的那样,444nm物种的衰减成为速率限制步骤。催化循环的最后一步可能通过NO自由基直接加成到铁-羟胺配合物上,或者通过NO自由基向铁硫醇部分的电子转移来进行,这类似于相应P450酶催化前列环素和血栓烷生物合成的假定机制。电子转移的后一过程可能构成所有血红素硫醇盐催化反应的一个共同步骤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验