Tsuruoka S, Schwartz G J
Department of Pediatrics, University of Rochester School of Medicine, New York 14642, USA.
J Clin Invest. 1997 Mar 15;99(6):1420-31. doi: 10.1172/JCI119301.
The outer medullary collecting duct (OMCD) absorbs HCO3- at high rates, but it is not clear if it responds to metabolic acidosis to increase H+ secretion. We measured net HCO3- transport in isolated perfused OMCDs taken from deep in the inner stripes of kidneys from control and acidotic (NH4Cl-fed for 3 d) rabbits. We used specific inhibitors to characterize the mechanisms of HCO3- transport: 10 microM Sch 28080 or luminal K+ removal to inhibit P-type H+,K+-ATPase activity, and 5-10 nM bafilomycin A1 or 1-10 nM concanamycin A to inhibit H+-ATPase activity. The results were comparable using either of each pair of inhibitors, and allowed us to show in control rabbits that 65% of net HCO3- absorption depended on H+-ATPase (H flux), and 35% depended on H+,K+-ATPase (H,K flux). Tubules from acidotic rabbits showed higher rates of HCO3- absorption (16.8+/-0.3 vs. 12.8+/-0.2 pmol/min per mm, P < 0.01). There was no difference in the H,K flux (5.9+/-0.2 vs. 5.8+/-0.2 pmol/min per mm), whereas there was a 61% higher H flux in segments from acidotic rabbits (11.3+/-0.2 vs. 7.0+/-0.2 pmol/min per mm, P < 0.01). Transport was then measured in other OMCDs before and after incubation for 1 h at pH 6.8, followed by 2 h at pH 7.4 (in vitro metabolic acidosis). Acid incubation in vitro stimulated HCO3- absorption (12.3+/-0.3 to 16.2+/-0.3 pmol/min per mm, P < 0.01), while incubation at pH 7.4 for 3 h did not change basal rate (11.8+/-0.4 to 11.7+/-0.4 pmol/min per mm). After acid incubation the H,K flux did not change, (4.7+/-0.4 to 4.6+/-0.4 pmol/min per mm), however, there was a 60% increase in H flux (6.6+/-0.3 to 10.8+/-0.3 pmol/min per mm, P < 0.01). In OMCDs from acidotic animals, and in OMCDs incubated in acid in vitro, there was a higher basal rate and a further increase in HCO3- absorption (16.7+/-0.4 to 21.3+/-0.3 pmol/min per mm, P < 0.01) because of increased H flux (11.5+/-0.3 to 15.7+/-0.2 pmol/min per mm, P < 0.01) without any change in H,K flux (5.4+/-0.3 to 5.6+/-0.3 pmol/min per mm). These data indicate that HCO3- absorption (H+ secretion) in OMCD is stimulated by metabolic acidosis in vivo and in vitro by an increase in H+-ATPase-sensitive HCO3- absorption. The mechanism of adaptation may involve increased synthesis and exocytosis to the apical membrane of proton pumps. This adaptation helps maintain homeostasis during metabolic acidosis.
外髓集合管(OMCD)以较高速率吸收HCO₃⁻,但尚不清楚其是否对代谢性酸中毒作出反应以增加H⁺分泌。我们测量了从对照兔和酸中毒兔(氯化铵喂养3天)肾内带深部分离的灌注OMCD中的净HCO₃⁻转运。我们使用特异性抑制剂来表征HCO₃⁻转运机制:10 μM Sch 28080或去除管腔K⁺以抑制P型H⁺,K⁺ -ATP酶活性,以及5 - 10 nM巴弗洛霉素A1或1 - 10 nM concanamycin A以抑制H⁺ -ATP酶活性。使用每对抑制剂中的任何一种得到的结果都是可比的,并且使我们能够在对照兔中表明,65%的净HCO₃⁻吸收依赖于H⁺ -ATP酶(H通量),35%依赖于H⁺,K⁺ -ATP酶(H,K通量)。酸中毒兔的肾小管显示出更高的HCO₃⁻吸收率(16.8±0.3对12.8±0.2 pmol/分钟每毫米,P < 0.01)。H,K通量没有差异(5.9±0.2对5.8±0.2 pmol/分钟每毫米),而酸中毒兔肾小管节段中的H通量高61%(11.3±0.2对7.0±0.2 pmol/分钟每毫米,P < 0.01)。然后在其他OMCD中测量转运,在pH 6.8孵育1小时,然后在pH 7.4孵育2小时(体外代谢性酸中毒)前后进行测量。体外酸性孵育刺激了HCO₃⁻吸收(12.3±0.3至16.2±0.3 pmol/分钟每毫米,P < 0.01),而在pH 7.4孵育3小时未改变基础速率(11.8±0.4至11.7±0.4 pmol/分钟每毫米)。酸性孵育后H,K通量没有变化(4.7±0.4至4.6±0.4 pmol/分钟每毫米),然而,H通量增加了60%(6.6±0.3至10.8±0.3 pmol/分钟每毫米,P < 0.01)。在酸中毒动物的OMCD中以及在体外酸性孵育的OMCD中,由于H通量增加(11.5±0.3至15.7±0.2 pmol/分钟每毫米,P < 0.01)而H,K通量没有任何变化(5.4±0.3至5.6±0.3 pmol/分钟每毫米),基础速率更高且HCO₃⁻吸收进一步增加(16.7±0.4至21.3±0.3 pmol/分钟每毫米,P < 0.01)。这些数据表明,体内和体外的代谢性酸中毒通过增加对H⁺ -ATP酶敏感的HCO₃⁻吸收来刺激OMCD中的HCO₃⁻吸收(H⁺分泌)。适应机制可能涉及质子泵向顶端膜的合成增加和胞吐作用增加。这种适应有助于在代谢性酸中毒期间维持体内平衡。