Suppr超能文献

The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius.

作者信息

Gleissner M, Kaiser U, Antonopoulos E, Schäfer G

机构信息

Institute für Biochemie, Medizinische Universität Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.

出版信息

J Biol Chem. 1997 Mar 28;272(13):8417-26. doi: 10.1074/jbc.272.13.8417.

Abstract

The thermoacidophilic archaeon Sulfolobus acidocaldarius expresses a very unusual quinol oxidase, which contains four heme a redox centers and one copper atom. The enzyme was solubilized with dodecyl maltoside and purified to homogeneity by a combination of hydrophobic interaction and anion exchange chromatography. The oxidase complex consists of four polypeptide subunits with apparent molecular masses of 64, 39, 27, and 14 kDa that are encoded by the soxABCD operon (Lübben, M., Kolmerer, B., and Saraste, M. (1992) EMBO J. 11, 805-812). The optical spectra and redox potentials of the SoxABCD complex have been characterized, and the absorption coefficients of the contributing cytochromes a587 and aa3 were determined. The EPR spectra indicate the presence of three low spin and one high spin heme species, the latter associated with the binuclear heme CuB site. Standard midpoint potentials of the cytochrome a587 heme centers were determined as +210 and +270 mV, respectively. The maximum turnover of the complex (1300 s-1 at 65 degrees C) was found to be about three times greater than that of the previously studied isolated cytochrome aa3 subunit alone (Gleissner, M., Elferink, M. G., Driessen, A. J., Konings, W. N., Anemüller, S., and Schäfer, G. (1994) Eur. J. Biochem. 224, 983-990). With N,N,N',N'-tetramethyl-1,4-phenylenediamine as a reductant, the SoxABCD complex reconstituted into liposomes generates a proton motive force. A new method is described by co-reconstitution of SoxABCD with a Sulfolobus Rieske FeS-protein (SoxL), allowing energization by cytochrome c. It is based on the finding that this Rieske protein can equilibrate electrons between cytochrome c and quinones reversibly (Schmidt, C. L., Anemüller, S., Teixeira, M., and Schäfer, G. (1995) FEBS Lett. 359, 239-243). With this system, generating no scalar protons, the stoichiometry of proton translocation could be determined. A net H+/e- ratio >1 was determined, identifying the SoxABCD complex as a proton-pumping quinol oxidase. According to structural analysis, the cytochrome aa3 moiety of the complex does not contain the signature of a H+ pumping channel as identified in Rhodobacter sphaeroides or Paracoccus denitrificans. Therefore, for H+ translocation, a mechanism different from that in typical heme-copper oxidases of the aa3 or bo3 type is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验