Suppr超能文献

不同类型肌球蛋白混合物产生的体外肌动蛋白丝滑动速度。

In vitro actin filament sliding velocities produced by mixtures of different types of myosin.

作者信息

Cuda G, Pate E, Cooke R, Sellers J R

机构信息

Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Biophys J. 1997 Apr;72(4):1767-79. doi: 10.1016/S0006-3495(97)78823-4.

Abstract

Using in vitro motility assays, we examined the sliding velocity of actin filaments generated by pairwise mixings of six different types of actively cycling myosins. In isolation, the six myosins translocated actin filaments at differing velocities. We found that only small proportions of a more slowly translating myosin type could significantly inhibit the sliding velocity generated by a myosin type that translocated filaments rapidly. In other experiments, the addition of noncycling, unphosphorylated smooth and nonmuscle myosin to actively translating myosin also inhibited the rapid sliding velocity, but to a significantly reduced extent. The data were analyzed in terms of a model derived from the original working cross-bridge model of A.F. Huxley. We found that the inhibition of rapidly translating myosins by slowly cycling was primarily dependent upon only a single parameter, the cross-bridge detachment rate at the end of the working powerstroke. In contrast, the inhibition induced by the presence of noncycling, unphosphorylated myosins required a change in another parameter, the transition rate from the weakly attached actomyosin state to the strongly attached state at the beginning of the cross-bridge power stroke.

摘要

我们使用体外运动分析方法,检测了六种不同类型的活跃循环肌球蛋白两两混合产生的肌动蛋白丝的滑动速度。单独来看,这六种肌球蛋白使肌动蛋白丝以不同速度移位。我们发现,只有一小部分平移速度较慢的肌球蛋白类型能够显著抑制由快速移位肌球蛋白类型产生的滑动速度。在其他实验中,向活跃平移的肌球蛋白中添加非循环、未磷酸化的平滑肌和非肌肉肌球蛋白也会抑制快速滑动速度,但程度显著降低。数据根据源自A.F.赫胥黎原始工作横桥模型的模型进行分析。我们发现,慢速循环对快速平移肌球蛋白的抑制主要仅取决于一个参数,即工作动力冲程结束时的横桥脱离率。相比之下,非循环、未磷酸化肌球蛋白的存在所诱导的抑制需要改变另一个参数,即在横桥动力冲程开始时从弱附着的肌动球蛋白状态转变为强附着状态的转换率。

相似文献

1
In vitro actin filament sliding velocities produced by mixtures of different types of myosin.
Biophys J. 1997 Apr;72(4):1767-79. doi: 10.1016/S0006-3495(97)78823-4.
2
3
Thin-filament linked regulation of smooth muscle myosin.
J Muscle Res Cell Motil. 1999 May;20(4):363-70. doi: 10.1023/a:1005408402323.
4
Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function.
Biophys J. 1992 Sep;63(3):730-40. doi: 10.1016/S0006-3495(92)81646-6.
5
The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.
J Biol Chem. 2014 Jul 25;289(30):21055-70. doi: 10.1074/jbc.M114.564740.
6
Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments.
J Cell Biol. 1985 Nov;101(5 Pt 1):1897-902. doi: 10.1083/jcb.101.5.1897.
9
A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro.
Sci Adv. 2017 Dec 13;3(12):eaao2267. doi: 10.1126/sciadv.aao2267. eCollection 2017 Dec.
10
Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11235-40. doi: 10.1073/pnas.1510241112. Epub 2015 Aug 20.

引用本文的文献

1
Subcellular context-specific tuning of actomyosin ring contractility within a common cytoplasm.
bioRxiv. 2024 Aug 26:2024.08.08.607200. doi: 10.1101/2024.08.08.607200.
2
Emergence of diverse patterns driven by molecular motors in the motility assay.
Cytoskeleton (Hoboken). 2024 Dec;81(12):902-912. doi: 10.1002/cm.21808. Epub 2023 Nov 10.
3
A multi-scale clutch model for adhesion complex mechanics.
PLoS Comput Biol. 2023 Jul 14;19(7):e1011250. doi: 10.1371/journal.pcbi.1011250. eCollection 2023 Jul.
4
Myosin essential light chain 1sa decelerates actin and thin filament gliding on β-myosin molecules.
J Gen Physiol. 2022 Oct 3;154(10). doi: 10.1085/jgp.202213149. Epub 2022 Sep 2.
6
Bridging the muscle genome to phenome across multiple biological scales.
J Exp Biol. 2022 Apr 1;225(7). doi: 10.1242/jeb.243630. Epub 2022 Apr 12.
7
Effects of substrate stiffness and actin velocity on in silico fibronectin fibril morphometry and mechanics.
PLoS One. 2021 Jun 9;16(6):e0248256. doi: 10.1371/journal.pone.0248256. eCollection 2021.
8
The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15632-15641. doi: 10.1073/pnas.1916343117. Epub 2020 Jun 22.
9
Single-molecule analysis reveals that regulatory light chains fine-tune skeletal myosin II function.
J Biol Chem. 2020 May 15;295(20):7046-7059. doi: 10.1074/jbc.RA120.012774. Epub 2020 Apr 9.
10
Collective and contractile filament motions in the myosin motility assay.
Soft Matter. 2020 Feb 12;16(6):1548-1559. doi: 10.1039/c9sm02082a.

本文引用的文献

1
Muscle structure and theories of contraction.
Prog Biophys Biophys Chem. 1957;7:255-318.
2
Motor proteins 2: myosin.
Protein Profile. 1995;2(12):1323-1423.
3
Determination of the myosin step size from mechanical and kinetic data.
Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2451-5. doi: 10.1073/pnas.90.6.2451.
6
A model of stress relaxation in cross-bridge systems: effect of a series elastic element.
Am J Physiol. 1993 Jul;265(1 Pt 1):C279-88. doi: 10.1152/ajpcell.1993.265.1.C279.
9
Enhanced force generation by smooth muscle myosin in vitro.
Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):202-5. doi: 10.1073/pnas.91.1.202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验