Carlier M F, Laurent V, Santolini J, Melki R, Didry D, Xia G X, Hong Y, Chua N H, Pantaloni D
Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
J Cell Biol. 1997 Mar 24;136(6):1307-22. doi: 10.1083/jcb.136.6.1307.
Actin-binding proteins of the actin depolymerizing factor (ADF)/cofilin family are thought to control actin-based motile processes. ADF1 from Arabidopsis thaliana appears to be a good model that is functionally similar to other members of the family. The function of ADF in actin dynamics has been examined using a combination of physical-chemical methods and actin-based motility assays, under physiological ionic conditions and at pH 7.8. ADF binds the ADP-bound forms of G- or F-actin with an affinity two orders of magnitude higher than the ATP- or ADP-Pi-bound forms. A major property of ADF is its ability to enhance the in vitro turnover rate (treadmilling) of actin filaments to a value comparable to that observed in vivo in motile lamellipodia. ADF increases the rate of propulsion of Listeria monocytogenes in highly diluted, ADF-limited platelet extracts and shortens the actin tails. These effects are mediated by the participation of ADF in actin filament assembly, which results in a change in the kinetic parameters at the two ends of the actin filament. The kinetic effects of ADF are end specific and cannot be accounted for by filament severing. The main functionally relevant effect is a 25-fold increase in the rate of actin dissociation from the pointed ends, while the rate of dissociation from the barbed ends is unchanged. This large increase in the rate-limiting step of the monomer-polymer cycle at steady state is responsible for the increase in the rate of actin-based motile processes. In conclusion, the function of ADF is not to sequester G-actin. ADF uses ATP hydrolysis in actin assembly to enhance filament dynamics.
肌动蛋白解聚因子(ADF)/丝切蛋白家族的肌动蛋白结合蛋白被认为可控制基于肌动蛋白的运动过程。拟南芥中的ADF1似乎是一个很好的模型,其功能与该家族的其他成员相似。在生理离子条件和pH 7.8下,已结合使用物理化学方法和基于肌动蛋白的运动分析来研究ADF在肌动蛋白动力学中的功能。ADF与ADP结合形式的G-肌动蛋白或F-肌动蛋白结合,其亲和力比ATP或ADP-磷酸结合形式高两个数量级。ADF的一个主要特性是它能够将肌动蛋白丝的体外周转速率(踏车行为)提高到与在运动性片状伪足中体内观察到的值相当的水平。在高度稀释、ADF有限的血小板提取物中,ADF提高了单核细胞增生李斯特菌的推进速率,并缩短了肌动蛋白尾。这些作用是由ADF参与肌动蛋白丝组装介导的,这导致肌动蛋白丝两端的动力学参数发生变化。ADF的动力学作用是末端特异性的,不能用丝切断来解释。主要的功能相关作用是肌动蛋白从尖端解离的速率增加25倍,而从带刺末端解离的速率不变。在稳态下单体-聚合物循环的限速步骤的这种大幅增加是基于肌动蛋白的运动过程速率增加的原因。总之,ADF的功能不是隔离G-肌动蛋白。ADF利用肌动蛋白组装中的ATP水解来增强丝动力学。