Roland Jeremy, Berro Julien, Michelot Alphée, Blanchoin Laurent, Martiel Jean-Louis
Université Joseph Fourier, TIMC-IMAG Laboratory, Grenoble, France.
Biophys J. 2008 Mar 15;94(6):2082-94. doi: 10.1529/biophysj.107.121988. Epub 2007 Dec 7.
Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, L, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: -2/3). We also showed that the average subunit residence time inside the filament, T, depends on the actin monomer (power law: -1/6) and ADF/cofilin (power law: -2/3) concentrations. In addition, filament length fluctuations are approximately 20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-P(i) versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo.
肌动蛋白动力学(即聚合/解聚)驱动着大量的细胞过程。然而,要解释在体内观察到的肌动蛋白丝的快速周转,仍有许多有待了解的地方。在这里,我们开发了一个最小动力学模型,该模型描述了在肌动蛋白解聚因子(ADF)/丝切蛋白存在下肌动蛋白丝动力学的关键细节。我们将分子机制限制为:1)肌动蛋白单体聚合导致丝的自发生长;2)丝中肌动蛋白亚基的老化;3)ADF/丝切蛋白与肌动蛋白丝亚基的协同结合;4)ADF/丝切蛋白切断丝。首先,通过数值模拟和数学分析,我们发现平均丝长度L受肌动蛋白单体浓度(幂律:5/6)和ADF/丝切蛋白浓度(幂律:-2/3)的控制。我们还表明,丝内亚基的平均停留时间T取决于肌动蛋白单体(幂律:-1/6)和ADF/丝切蛋白(幂律:-2/3)的浓度。此外,丝长度波动约为平均丝长度的20%。而且,ADF/丝切蛋白在调节丝长度的同时进行片段化,使丝中ATP-或ADP-P(i)与ADP结合亚基保持高摩尔比。后一种特性对ADF/丝切蛋白过高的切断活性具有保护作用。我们提出,体内ADF/丝切蛋白的活性受沿着生长的肌动蛋白丝动态建立的亲和力梯度的控制。我们的分析表明,ADF/丝切蛋白调节使肌动蛋白丝保持在与体内观察到的细胞骨架动力学相容的高度动态状态。