Janin J
Laboratoire d'Enzymologie et de Biologie Structurales, UPR 9063 CNRS, Gif-sur-Yvette, France.
Proteins. 1997 Jun;28(2):153-61. doi: 10.1002/(sici)1097-0134(199706)28:2<153::aid-prot4>3.0.co;2-g.
We examine a simple kinetic model for association that incorporates the basic features of protein-protein recognition within the rigid body approximation, that is, when no large conformation change occurs. Association starts with random collision at the rate k(coll) predicted by the Einstein-Smoluchowski equation. This creates an encounter pair that can evolve into a stable complex if and only if the two molecules are correctly oriented and positioned, which has a probability p(r). In the absence of long-range interactions, the bimolecular rate of association is p(r) k(coll). Long-range electrostatic interactions affect both k(coll) and p(r). The collision rate is multiplied by q(t), a factor larger than 1 when the molecules carry net charges of opposite sign as coulombic attraction makes collisions more frequent, and less than 1 in the opposite case. The probability p(r) is multiplied by a factor q(r) that represents the steering effect of electric dipoles, which preorient the molecules before they collide. The model is applied to experimental data obtained by Schreiber and Fersht (Nat. Struct. Biol. 3:427-431, 1996) on the kinetics of barnase-barstar association. When long-range electrostatic interactions are fully screened or mutated away, q(t)q(r) approximately 1, and the observed rate of productive collision is p(r) k(coll) approximately 10(5) M(-1) x s(-1). Under these conditions, p(r) approximately 1.5 x 10(-5) is determined by geometric constraints corresponding to a loss of rotational freedom. Its value is compatible with computer docking simulations and implies a rotational entropy loss deltaS(rot) approximately 22 e.u. in the transition state. At low ionic strength, long-range electrostatic interactions accelerate barnase-barstar association by a factor q(t)q(r) of up to 10(5) as favorable charge-charge and charge-dipole interactions work together to make it much faster than free diffusion would allow.
我们研究了一种简单的缔合动力学模型,该模型在刚体近似下纳入了蛋白质 - 蛋白质识别的基本特征,即当不发生大的构象变化时。缔合始于由爱因斯坦 - 斯莫卢霍夫斯基方程预测的速率(k_{(coll)})的随机碰撞。这产生了一个相遇对,当且仅当两个分子正确定向和定位时,该相遇对才能演变成稳定的复合物,其概率为(p(r))。在没有长程相互作用的情况下,双分子缔合速率为(p(r)k_{(coll)})。长程静电相互作用会影响(k_{(coll)})和(p(r))。碰撞速率乘以(q(t)),当分子带有相反符号的净电荷时,由于库仑吸引使碰撞更频繁,该因子大于(1),而在相反情况下小于(1)。概率(p(r))乘以一个因子(q(r)),该因子代表电偶极子的引导作用,电偶极子在分子碰撞前使其预先定向。该模型应用于施赖伯和费什特(《自然结构生物学》3:427 - 431,1996)获得的关于巴纳酶 - 巴纳斯塔缔合动力学的实验数据。当长程静电相互作用被完全屏蔽或突变去除时,(q(t)q(r)\approx1),观察到的有效碰撞速率为(p(r)k_{(coll)}\approx10^{5}M^{-1}\cdot s^{-})。在这些条件下,(p(r)\approx1.5×10^{-5})由对应于旋转自由度损失的几何约束确定。其值与计算机对接模拟兼容,并意味着在过渡态旋转熵损失(\Delta S_{(rot)}\approx22)熵单位。在低离子强度下,由于有利的电荷 - 电荷和电荷 - 偶极相互作用共同作用,使得巴纳酶 - 巴纳斯塔缔合比自由扩散允许的速度快得多,长程静电相互作用使缔合加速高达(10^{5})倍的因子(q(t)q(r))。