Suppr超能文献

对数秩检验和Cox回归模型在异质样本临床试验中的效能

Power of logrank test and Cox regression model in clinical trials with heterogeneous samples.

作者信息

Akazawa K, Nakamura T, Palesch Y

机构信息

Department of Medical Informatics, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

出版信息

Stat Med. 1997 Mar 15;16(5):583-97. doi: 10.1002/(sici)1097-0258(19970315)16:5<583::aid-sim433>3.0.co;2-z.

Abstract

This paper evaluates the loss of power of the simple and stratified logrank tests due to heterogeneity of patients in clinical trials and proposes a flexible and efficient method of estimating treatment effects adjusting for prognostic factors. The results of the paper are based on the analyses of survival data from a large clinical trial which includes more than 6000 cancer patients. Major findings from the simulation study on power are: (i) for a heterogeneous sample, such as advanced cancer patients, a simple logrank test can yield misleading results and should not be used; (ii) the stratified logrank test may suffer some power loss when many prognostic factors need to be considered and the number of patients within stratum is small. To address the problems due to heterogeneity, the Cox regression method with a special hazard model is recommended. We illustrate the method using data from a gastric cancer clinical trial.

摘要

本文评估了由于临床试验中患者的异质性导致的简单和分层对数秩检验的功效损失,并提出了一种灵活有效的估计治疗效果的方法,该方法可针对预后因素进行调整。本文的结果基于对一项大型临床试验生存数据的分析,该试验包括6000多名癌症患者。关于功效的模拟研究的主要发现如下:(i)对于异质性样本,如晚期癌症患者,简单对数秩检验可能会产生误导性结果,不应使用;(ii)当需要考虑许多预后因素且层内患者数量较少时,分层对数秩检验可能会出现一些功效损失。为了解决异质性带来的问题,推荐使用具有特殊风险模型的Cox回归方法。我们使用胃癌临床试验的数据说明了该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验