Akazawa K
Kyushu University, Faculty of Medicine, Department of Medical Informatics, Fukuoka, Japan.
J Med Syst. 1997 Aug;21(4):229-38. doi: 10.1023/a:1022884504683.
This paper describes a measure of explained variation (MEV) of survival times for a given regression model used in survival analysis. It quantifies the predictive power of a set of prognostic factors in the model, and therefore provides useful information for more precise prediction of patient prognosis, and for designing randomized clinical trials with the capability of determining treatment effects. The MEV defined in this article is asymptotically derived from the squared product-moment correlation; it can be interpreted as an adaptation of the multiple correlation coefficient for the normal linear model to the survival time regression model. Monte-Carlo simulations are performed to investigate the statistical behavior of the proposed MEV. The MEV is applied to estimate the predictive power of several sets of prognostic factors for gastric cancer in Japan using data from a large clinical trial.
本文描述了一种用于生存分析中给定回归模型的生存时间解释变异量(MEV)的度量方法。它量化了模型中一组预后因素的预测能力,因此为更精确地预测患者预后以及设计能够确定治疗效果的随机临床试验提供了有用信息。本文定义的MEV是从平方积矩相关渐近推导而来的;它可以被解释为将正态线性模型的多重相关系数应用于生存时间回归模型。进行了蒙特卡罗模拟以研究所提出的MEV的统计行为。利用一项大型临床试验的数据,将MEV应用于估计日本胃癌几组预后因素的预测能力。