Suppr超能文献

大肠杆菌胸苷酸合成酶的动力学机制:通过配体结合、一级和二级同位素效应以及稳态前催化的测量来确定

Kinetic scheme for thymidylate synthase from Escherichia coli: determination from measurements of ligand binding, primary and secondary isotope effects, and pre-steady-state catalysis.

作者信息

Spencer H T, Villafranca J E, Appleman J R

机构信息

Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA.

出版信息

Biochemistry. 1997 Apr 8;36(14):4212-22. doi: 10.1021/bi961794q.

Abstract

We have determined kinetic and thermodynamic constants governing binding of substrates and products to thymidylate synthase from Escherichia coli (TS) sufficient to describe the kinetic scheme for this enzyme. (1) The catalytic mechanism is ordered in the following manner, TS + dUMP --> TS x dUMP + (6R)-5,10-CH2-H4folate --> TS x dUMP x (6R)-5,10-CH2H4folate --> TS x dTMP x H2folate --> TS x dTMP --> TS as predicted previously by others from steady-state measurements. (2) When substrates are saturating, the overall reaction rate is governed by the slow conversion of enzyme-bound substrates to bound products as demonstrated by (i) large primary and secondary isotope effects on k(cat) and (ii) high rates of product dissociation compared to k(cat). (3) Stopped-flow studies measuring the binding of 10-propargyl-5,8-dideazafolate, an analog of (6R)-5,10-CH2H4folate, with the active site mutant C146A or the C-terminus-truncated mutant P261Am enabled us to identify physical events corresponding to spectral changes which are observed with the wild-type enzyme during initiation of catalysis. A kinetically identifiable reaction step, TS x dUMP x (6R)-5,10-CH2H4folate --> (TS x dUMP x (6R)-5,10-CH2H4folate)*, likely represents reorientation of the C-terminus of the enzyme over the catalytic site. This seals the substrates into a relatively nonaqueous environment in which catalysis can occur. (4) Although TS is a dimer of identical subunits, catalysis is probably confined to only one subunit at a time. (5) The "high-resolution" kinetic scheme described herein provides a framework for the interpretation of the kinetics of catalysis by mutant ecTS chosen to provide insights into the relationship between structure and function.

摘要

我们已经确定了控制底物和产物与大肠杆菌胸苷酸合成酶(TS)结合的动力学和热力学常数,这些常数足以描述该酶的动力学机制。(1)催化机制按以下顺序进行,TS + dUMP → TS·dUMP + (6R)-5,10-CH2-H4叶酸 → TS·dUMP·(6R)-5,10-CH2H4叶酸 → TS·dTMP·H2叶酸 → TS·dTMP → TS,正如其他人之前通过稳态测量所预测的那样。(2)当底物饱和时,整体反应速率由酶结合底物向结合产物的缓慢转化所控制,这通过以下两点得以证明:(i)对k(cat)有较大的一级和二级同位素效应;(ii)与k(cat)相比,产物解离速率较高。(3)通过停流研究测量10-炔丙基-5,8-二氮杂叶酸((6R)-5,10-CH2H4叶酸的类似物)与活性位点突变体C146A或C末端截短突变体P261Am的结合,使我们能够识别与野生型酶在催化起始过程中观察到的光谱变化相对应的物理事件。一个动力学上可识别的反应步骤,TS·dUMP·(6R)-5,10-CH2H4叶酸 → (TS·dUMP·(6R)-5,10-CH2H4叶酸)*,可能代表酶的C末端在催化位点上的重新定向。这将底物封闭在一个相对非水的环境中,在此环境中可以发生催化作用。(4)尽管TS是由相同亚基组成的二聚体,但催化作用可能一次仅局限于一个亚基。(5)本文所述的“高分辨率”动力学机制为解释选择用于深入了解结构与功能关系的突变型ecTS的催化动力学提供了一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验