Gurevic Ilya, Islam Zahidul, Świderek Katarzyna, Trepka Kai, Ghosh Ananda K, Moliner Vicent, Kohen Amnon
Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242-1727, United States.
present address:Institute for Quantitative Biosciences (QB3), University of California-Berkeley, Berkeley, 94720, United States.
ACS Catal. 2018 Nov 2;8(11):10241-10253. doi: 10.1021/acscatal.8b02554. Epub 2018 Sep 20.
Thymidylate synthase (TSase), an enzyme responsible for the biosynthesis of 2'-deoxythymidine 5'-monophosphate (thymidylate, dTMP) necessary for DNA synthesis, has been a drug target for decades. TSase is a highly conserved enzyme across species ranging from very primitive organisms to mammals. Among the many conserved active site residues, an asparagine (N177, using residues numbering) appears to make direct hydrogen bonds with both the C4=O4 carbonyl of the 2'-deoxyuridine 5'-monophosphate (uridylate, dUMP) substrate and its pyrimidine ring's N3. Recent studies have reassessed the TSase catalytic mechanism, focusing on the degree of negative charge accumulation at the O4 carbonyl of the substrate during two critical H-transfers - a proton abstraction and a hydride transfer. To obtain insights into the role of this conserved N177 on the hydride transfer, we examined its aspartic acid (D) and serine (S) mutants - each of which is expected to alter hydrogen bonding and charge stabilization around the C4=O4 carbonyl of the 2'-deoxyuridine 5'-monophosphate (uridylate, dUMP) substrate. Steady-state kinetics, substrate binding order studies and temperature-dependency analysis of intrinsic KIEs for the hydride transfer step of the TSase catalytic cycle suggest the active site of N177D is not precisely organized for that step. A smaller disruption was observed for N177S, which could be rationalized by partial compensation by water molecules and rearrangement of other residues toward preparation of the system for the hydride transfer under study. These experimental findings are qualitatively mirrored by QM/MM computational simulations, thereby shedding light on the sequence and synchronicity of steps in the TSase-catalyzed reaction. This information could potentially inform the design of mechanism-based drugs targeting this enzyme.
胸苷酸合成酶(TSase)是一种负责合成DNA合成所需的5'-单磷酸脱氧胸苷(胸苷酸,dTMP)的酶,几十年来一直是药物靶点。TSase是一种在从非常原始的生物到哺乳动物的物种中高度保守的酶。在许多保守的活性位点残基中,一个天冬酰胺(N177,采用残基编号)似乎与5'-单磷酸脱氧尿苷(尿苷酸,dUMP)底物的C4=O4羰基及其嘧啶环的N3直接形成氢键。最近的研究重新评估了TSase的催化机制,重点关注在两个关键的氢转移过程中底物O4羰基上负电荷积累的程度——一个质子抽取和一个氢化物转移。为了深入了解这个保守的N177在氢化物转移中的作用,我们研究了它的天冬氨酸(D)和丝氨酸(S)突变体——预计每个突变体都会改变5'-单磷酸脱氧尿苷(尿苷酸,dUMP)底物C4=O4羰基周围的氢键和电荷稳定性。稳态动力学、底物结合顺序研究以及TSase催化循环中氢化物转移步骤的本征动力学同位素效应(KIEs)的温度依赖性分析表明,N177D的活性位点在该步骤中没有精确组织。对于N177S,观察到的干扰较小,这可以通过水分子的部分补偿以及其他残基的重排来解释,这些残基重排是为了使正在研究的氢化物转移系统做好准备。这些实验结果在定性上与量子力学/分子力学(QM/MM)计算模拟结果相符,从而揭示了TSase催化反应中步骤的顺序和同步性。这些信息可能为设计针对该酶的基于机制的药物提供参考。