Yuan W, Serron S C, Haddican M M, Cawley G F, Eyer C S, Backes W L
Department of Pharmacology and Experimental Therapeutics, Louisiana State University Medical Center, New Orleans 70112, USA.
Biochim Biophys Acta. 1997 Mar 15;1334(2-3):361-72. doi: 10.1016/s0304-4165(96)00114-6.
Ethylbenzene (EB) treatment to male Holtzman rats was shown to alter the expression of cytochrome P-450s 1A1, 2B, 2C11, 2E1, and 3A, with several isozymes exhibiting complex multiphasic induction patterns when treated for 1 and 3 days with the alkylbenzene. Male rats were treated with daily i.p. injections of EB for either one or three days, and the effects on P-450 dependent activities, P-450 immunoreactive protein levels and their corresponding mRNA levels were measured. Although levels of P-450 2B, 2C11, 2E1, and 3A were all modulated by EB treatment, each exhibited different temporal characteristics. P-450 2B1/2B2 were induced after a single EB exposure and continued to be elevated after EB treatment for 3 days. However, P-450 2B1 and 2B2 mRNA levels were elevated about 50-fold after a single injection, and returned to control values after continued EB administration. P-450 2C11 expression was decreased to about 45% of controls after either single or repeated EB exposure with corresponding changes being observed in the levels of 2C11 mRNA. P-450 2E1 was induced by EB according to a complex multistep induction pattern. Both P-450 2E1 protein and RNA levels were increased 2-4-fold after a single EB treatment but returned to control values after continued administration. P-450 3A-dependent testosterone 2beta-hydroxylation and P-450 3A immunoreactive protein levels were both increased about 3-fold after a single EB treatment, whereas levels were only elevated 2-fold after EB treatment for 3 days. In contrast, P-450 3A2 mRNA was unaffected by a single EB injection but was increased 3.5-fold with repeated administration. Changes in P-450 3A1/2 were similar to those observed with P-450 3A2, whereas changes in P-450 3A1/23 and 3A23 mRNAs were not detectable. These data indicate that while EB can influence the expression of several P-450 isozymes, the hydrocarbon appears to alter P-450 expression by acting at different regulatory steps.