Suppr超能文献

豌豆的LS基因座编码赤霉素生物合成酶内根-贝壳杉烯合酶A。

The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A.

作者信息

Ait-Ali T, Swain S M, Reid J B, Sun T, Kamiya Y

机构信息

Laboratory for Plant Hormone Function, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan.

出版信息

Plant J. 1997 Mar;11(3):443-54. doi: 10.1046/j.1365-313x.1997.11030443.x.

Abstract

Gibberellins (GAs) are hormones required for several aspects of plant development, including internode elongation and seed development in pea (Pisum sativum L.). The first committed step in the GA biosynthesis pathway is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene via copalyl diphosphate (CDP). These two reactions are catalyzed by the cyclases ent-kaurene synthase A (KSA) and ent-kaurene synthase B (KSB), respectively. Previous genetic and biochemical analysis of the GA-responsive ls-1 mutant of pea suggested that GA levels are reduced in a developmental- and organ-specific manner due to reduced GA biosynthesis. Analysis of cellfree enzyme preparations from WT and ls-1 embryos at contact point reveals that ls-1 reduces the activity of KSA but not KSB. To characterize the ls-1 mutation in more detail, a cDNA coding for a pea KSA was cloned and shown to be encoded by the LS locus. The ls-1 mutation results from an intronic G to A substitution that causes impaired RNA splicing. To determine the activity of the KSAs encoded by the LS and ls-1 alleles, a new in vitro assay for combined KSA and KSB activity has been developed using the KSB gene of pumpkin. Using recombinant WT KSA and KSB fusion proteins, GGDP is converted to ent-kaurene in vitro. Based on the sequence of RT-PCR products, three different truncated KSA proteins are predicted to exist in ls-1 plants. The most abundant mutant KSA protein does not possess detectable activity in vitro. Nevertheless, the ls-1 allele is not null and is able to encode at least a partially functional KSA since a more severe is allele has been identified. The ls-1 mutation has played a key role in identifying a role for GAs in pea seed development in the first few days after fertilization, but not in older seeds. KSA expression in seeds is developmentally regulated and parallels overall GA biosynthesis, suggesting that KSA expression may play an important role in the regulation of GA biosynthesis and seed development.

摘要

赤霉素(GAs)是植物发育多个方面所必需的激素,包括豌豆(Pisum sativum L.)的节间伸长和种子发育。赤霉素生物合成途径中的第一个关键步骤是香叶基香叶基二磷酸(GGDP)通过柯巴基二磷酸(CDP)转化为内根-贝壳杉烯。这两个反应分别由环化酶内根-贝壳杉烯合酶A(KSA)和内根-贝壳杉烯合酶B(KSB)催化。先前对豌豆GA反应型ls-1突变体的遗传和生化分析表明,由于GA生物合成减少,GA水平以发育和器官特异性方式降低。对野生型和ls-1胚胎在接触点的无细胞酶制剂分析表明,ls-1降低了KSA的活性,但不影响KSB的活性。为了更详细地表征ls-1突变,克隆了一个编码豌豆KSA的cDNA,并证明它由LS基因座编码。ls-1突变是由内含子G到A的替换引起的,导致RNA剪接受损。为了确定由LS和ls-1等位基因编码的KSA的活性,利用南瓜的KSB基因开发了一种新的体外联合测定KSA和KSB活性的方法。使用重组野生型KSA和KSB融合蛋白,GGDP在体外被转化为内根-贝壳杉烯。根据RT-PCR产物的序列,预测ls-1植物中存在三种不同的截短KSA蛋白。最丰富的突变KSA蛋白在体外不具有可检测的活性。然而,ls-1等位基因并非无效,并且能够编码至少部分功能的KSA,因为已经鉴定出一个更严重的等位基因。ls-1突变在确定GA在受精后最初几天豌豆种子发育中的作用方面发挥了关键作用,但在较老的种子中则不然。种子中KSA的表达受到发育调控,与整体GA生物合成平行,这表明KSA表达可能在GA生物合成和种子发育的调控中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验