Suppr超能文献

Analysis of membrane protein self-association in lipid systems by fluorescence particle counting: application to the dihydropyridine receptor.

作者信息

Hinterdorfer P, Gruber H J, Striessnig J, Glossmann H, Schindler H

机构信息

Institute for Biophysics, University of Linz, Austria.

出版信息

Biochemistry. 1997 Apr 15;36(15):4497-504. doi: 10.1021/bi962009c.

Abstract

Fluorescence particle counting (FPC) is employed to analyze the distribution of a purified membrane protein, the dihydropyridine receptor (DHP-R), in detergent micelles, in lipid vesicles, and in lipid monolayers generated from the vesicles. The method was used to identify conditions for which DHP-Rs occur singly distributed in micelles and in vesicles. In monolayers, the DHP-R showed self-association, starting from monomeric distribution at concentrations (c) of typically 10 DHP-R/microm2. The average cluster size [m(t)] of associates was followed by FPC in time and the dependence of the lateral diffusion constant [D(lat)(m,pi)] of the associates on the surface pressure (pi) was determined. By studying the dependence of m(t) on c, pi, D(lat)(pi), and salt concentration (c(s)), we derived an empirical expression for the association rate constant (k(a)) and for m(t) that fits the experimental m(t) relations. Theoretical justification for these dependencies is obtained from collision theory, leading to a mechanistic picture of the aggregation process. DHP-R association is irreversible. Its rate is not diffusion-limited. A large number of collisions is required to overcome an interaction energy barrier of about 6-11 kT, depending on m and c(s) but not on pi. The increase in association rate with increasing average cluster size m is related to increasing van der Waals attraction, while the increase in rate with increasing c(s) relates to decreasing electrostatic repulsion. Van der Waals and electrostatic forces represent, however, only part of the interaction energy. The main contribution was not dependent on the variables studied and, most likely, reflects hydration forces which need to be overcome for association.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验