Suppr超能文献

Free radical production during ethanol intoxication, dependence, and withdrawal.

作者信息

Vallett M, Tabatabaie T, Briscoe R J, Baird T J, Beatty W W, Floyd R A, Gauvin D V

机构信息

Psychobiology Laboratory, University of Oklahoma Health Sciences Center, Oklahoma City, USA.

出版信息

Alcohol Clin Exp Res. 1997 Apr;21(2):275-85.

PMID:9113264
Abstract

Indices of free radical production and cell damage were examined in male Sprague-Dawley rats chronically exposed to either ethanol (ETOH) or water vapor. In experiment 1, rats experienced either 1 or 11 cycles of ETOH exposure and withdrawal. Brain tissue was harvested 12 hr after ETOH exposure, and 1 hr after being injected with sodium salicylate as a scavenger. Brain tissue was analyzed for the formation of salicylate hydroxylation products as a measure of .OH production during withdrawal. Significant group differences for .OH production were demonstrated for 2,3- and 2,5-dihydroxybenzoic acid in the single cycle ETOH exposed rats compared with their water cohorts. A significant between group difference for 2,5-dihydroxybenzoic acid, only, was demonstrated for the multiple cycles of ETOH exposure. Spontaneous seizures were shown to correlate with increased production of .OH in ETOH exposed rats. In experiment 2, brain tissue was harvested from different groups of rats after removal from the chambers, at 0, 2, 12, 24, 36, and 48 hr after a single exposure cycle. Tissue was analyzed for (1) salicylate hydroxylation (as above), (2) glutamine synthetase activity, (3) whole brain glutamate concentration, and (4) oxidized protein. A multiple regression analysis was conducted on the five dependent variables and found they could be predicted by specific behavioral and neurological ratings. These data suggest that cell damage during withdrawal may have multiple time-dependent components.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验