Suppr超能文献

在巢式病例对照研究中使用频数匹配提高精度。

Increased precision using countermatching in nested case-control studies.

作者信息

Steenland K, Deddens J A

机构信息

National Institute for Occupational Safety and Health, Cincinnati, OH. 45226, USA.

出版信息

Epidemiology. 1997 May;8(3):238-42. doi: 10.1097/00001648-199705000-00002.

Abstract

Nested case-control studies in occupational cohorts are often used to estimate exposure effects when development of detailed exposure estimates for all cohort members is too costly. Duration of exposure, which can act as a surrogate for cumulative exposure, is often readily available for all cohort members. Langholz and others have recently proposed a method of control selection called countermatching, which uses data on the surrogate to determine which controls are selected from the risk set for a given case. This method may increase precision relative to the usual random sampling of the risk set. We compare countermatching with random sampling in a nested case-control study of silicosis among miners. Data on cumulative exposure were in fact available for all cohort members, enabling estimation of the parameter of interest in the full cohort. We conducted nested case-control analyses using 100, 20, 10, and 3 controls per case using random sampling and additional analyses using 3 controls per case with two different methods of countermatching. All analyses were replicated 50 times to explore the statistical properties of the estimated exposure parameter. We found that one of the countermatching methods markedly increased efficiency compared with random sampling. Countermatching using 3 controls per case yielded an approximate 25% increase in relative efficiency compared with random sampling; it was approximately equivalent to random sampling using 10 controls.

摘要

在职业队列中进行巢式病例对照研究,常用于在为所有队列成员制定详细的暴露估计成本过高时估计暴露效应。暴露持续时间可作为累积暴露的替代指标,通常所有队列成员都容易获得该数据。朗霍尔茨等人最近提出了一种称为反向匹配的对照选择方法,该方法利用替代指标的数据来确定从给定病例的风险集中选择哪些对照。相对于通常对风险集进行随机抽样的方法,这种方法可能会提高精度。我们在一项矿工矽肺病的巢式病例对照研究中,将反向匹配与随机抽样进行了比较。实际上所有队列成员都有累积暴露的数据,从而能够估计整个队列中感兴趣的参数。我们使用随机抽样方法,对每个病例分别采用100、20、10和3个对照进行巢式病例对照分析,并使用两种不同的反向匹配方法,对每个病例采用3个对照进行额外分析。所有分析均重复50次,以探索估计暴露参数的统计特性。我们发现,其中一种反向匹配方法与随机抽样相比显著提高了效率。与随机抽样相比,每个病例使用3个对照的反向匹配方法使相对效率提高了约25%;它大致相当于使用10个对照的随机抽样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验