Suppr超能文献

Neuronal nitric oxide reduces sympathetic excitability by modulation of central glutamate effects in pigs.

作者信息

Zanzinger J, Czachurski J, Seller H

机构信息

I. Physiologisches Institut, Universität Heidelberg, Germany.

出版信息

Circ Res. 1997 Apr;80(4):565-71. doi: 10.1161/01.res.80.4.565.

Abstract

Mechanisms of the modulation of sympathetic activity by neuronal NO were studied in vagotomized anesthetized pigs. Inhibition of neuronal NO synthase (nNOS) within the brain stem by intracerebroventricular (ICV) administration of 7-nitroindazole (7-NI, 1 mmol/L) or S-methyl-L-thiocitrulline (MeTC, 0.1 mmol/L) caused slight increases in renal sympathetic nerve activity (RSNA) but did not affect arterial blood pressure (BP) or cardiac output (CO). However, the sympathoexcitatory effects of glutamate (0.5 mL, 0.1 mol/L ICV) that were associated with marked increases in BP, CO, and heart rate were potentiated by both nNOS inhibitors. Furthermore, 7-NI and MeTC significantly enhanced the responses of RSNA, BP, and CO to activation of somatosympathetic reflexes via stimulation of the left greater sciatic nerve (nervus ischiadicus, 10 to 20 V, 30 Hz, 1-millisecond pulses). Subsequent systemic inhibition of either the neuronal (by 7-NI) or all isoforms of NOS by NG-nitro-L-arginine-methyl ester (20 mg/kg) had no significant additional effects on these responses. The effects of NOS inhibition were effectively counteracted by the endogenous NOS substrate L-arginine and by S-nitroso-N-acetyl-penicillamine (SNAP), a stable analogue of endogenous S-nitroso factors. Disruption of sympathoinhibitory baroreflex mechanisms by bilateral cutting of the carotid sinus nerves caused increases in RSNA and slightly increased responses to all excitatory stimuli but had no effects on the actions of the NOS inhibitors or SNAP. These results suggest that modulation of glutamate effects by nNOS-derived NO may be an important mechanism by which NO affects sympathetic activity in pigs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验