Bendahhou S, Cummins T R, Agnew W S
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Am J Physiol. 1997 Feb;272(2 Pt 1):C592-600. doi: 10.1152/ajpcell.1997.272.2.C592.
Voltage-gated rat skeletal muscle and cardiac Na+ channels are modulated by exogenous unsaturated fatty acids. Application of 1-10 microM arachidonic or oleic acids reversibly depressed Na+ channel conductance and shifted the inactivation curve to hyperpolarizing potentials. These effects were not prevented by inhibitors of lipoxygenase, cyclooxygenase, cytochrome P-450 epoxygenase, or protein kinase C. Neither palmitic acid nor methyl ester oleate had an effect on the inward Na+ current, suggesting that trivial variations in membrane fluidity are not responsible for the Na+ current depression or kinetic changes. Arachidonic acid altered fast Na+ inactivation without changing the slow inactivation kinetics. Moreover, skeletal muscle Na+ channel gating currents were markedly decreased by 2 microM arachidonic acid. Finally, nonstationary noise analysis indicated that both the number of channels and the open probability were slightly decreased without change in the single-channel conductance. These data suggest that unsaturated fatty acids such as arachidonic and oleic acids 1) specifically regulate voltage-gated Na+ channels and 2) interact directly with Na+ channels, perhaps at a fatty acid binding domain, by decreasing the total gating charge and altering fast-inactivation kinetics.