Ayscough K R, Stryker J, Pokala N, Sanders M, Crews P, Drubin D G
Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA.
J Cell Biol. 1997 Apr 21;137(2):399-416. doi: 10.1083/jcb.137.2.399.
We report that the actin assembly inhibitor latrunculin-A (LAT-A) causes complete disruption of the yeast actin cytoskeleton within 2-5 min, suggesting that although yeast are nonmotile, their actin filaments undergo rapid cycles of assembly and disassembly in vivo. Differences in the LAT-A sensitivities of strains carrying mutations in components of the actin cytoskeleton suggest that tropomyosin, fimbrin, capping protein, Sla2p, and Srv2p act to increase actin cytoskeleton stability, while End3p and Sla1p act to decrease stability. Identification of three LAT-A resistant actin mutants demonstrated that in vivo effects of LAT-A are due specifically to impairment of actin function and implicated a region on the three-dimensional actin structure as the LAT-A binding site. LAT-A was used to determine which of 19 different proteins implicated in cell polarity development require actin to achieve polarized localization. Results show that at least two molecular pathways, one actin-dependent and the other actin-independent, underlie polarity development. The actin-dependent pathway localizes secretory vesicles and a putative vesicle docking complex to sites of cell surface growth, providing an explanation for the dependence of polarized cell surface growth on actin function. Unexpectedly, several proteins that function with actin during cell polarity development, including an unconventional myosin (Myo2p), calmodulin, and an actin-interacting protein (Bud6/Aip3p), achieved polarized localization by an actin-independent pathway, revealing interdependence among cell polarity pathways. Finally, transient actin depolymerization caused many cells to abandon one bud site or mating projection and to initiate growth at a second site. Thus, actin filaments are also required for maintenance of an axis of cell polarity.
我们报告称,肌动蛋白组装抑制剂拉特鲁毒素-A(LAT-A)可在2 - 5分钟内使酵母肌动蛋白细胞骨架完全解体,这表明尽管酵母不具有运动性,但其肌动蛋白丝在体内会经历快速的组装和解聚循环。携带肌动蛋白细胞骨架成分突变的菌株对LAT-A的敏感性存在差异,这表明原肌球蛋白、丝束蛋白、帽蛋白、Sla2p和Srv2p可增加肌动蛋白细胞骨架的稳定性,而End3p和Sla1p则会降低其稳定性。对三个抗LAT-A的肌动蛋白突变体的鉴定表明,LAT-A在体内的作用是由于肌动蛋白功能的特异性受损,并暗示三维肌动蛋白结构上的一个区域是LAT-A的结合位点。LAT-A被用于确定19种与细胞极性发育相关的不同蛋白质中,哪些需要肌动蛋白来实现极性定位。结果表明,至少有两条分子途径,一条依赖肌动蛋白,另一条不依赖肌动蛋白,是极性发育的基础。依赖肌动蛋白的途径将分泌囊泡和一种假定的囊泡对接复合体定位到细胞表面生长部位,这为极化细胞表面生长对肌动蛋白功能的依赖性提供了解释。出乎意料的是,几种在细胞极性发育过程中与肌动蛋白协同作用的蛋白质,包括一种非常规肌球蛋白(Myo2p)、钙调蛋白和一种肌动蛋白相互作用蛋白(Bud6/Aip3p),通过不依赖肌动蛋白的途径实现了极性定位,揭示了细胞极性途径之间的相互依赖性。最后,短暂的肌动蛋白解聚导致许多细胞放弃一个芽位点或交配突起,并在第二个位点开始生长。因此,肌动蛋白丝对于维持细胞极性轴也是必需的。
Mol Biol Cell. 2024-9-1
J Am Chem Soc. 2024-4-3
MicroPubl Biol. 2024-2-12
Nat Rev Mol Cell Biol. 2024-4
Cold Spring Harb Symp Quant Biol. 1995
Curr Opin Cell Biol. 1996-2
Proc Natl Acad Sci U S A. 1996-4-30
Cell. 1996-2-9
J Cell Biol. 1996-3