Suppr超能文献

Striatal and cortical NMDA receptors are altered by a neurotoxic regimen of methamphetamine.

作者信息

Eisch A J, O'Dell S J, Marshall J F

机构信息

Department of Psychobiology, University of California, Irvine 92717-4550, USA.

出版信息

Synapse. 1996 Mar;22(3):217-25. doi: 10.1002/(SICI)1098-2396(199603)22:3<217::AID-SYN3>3.0.CO;2-F.

Abstract

Methamphetamine (m-AMPH) treatment produces long-lasting damage to striatal and cortical monoaminergic terminals and may also injure nonmonoaminergic cortical neurons. Evidence suggests that both dopamine (DA) and glutamate (GLU) play crucial roles in producing this damage. We used quantitative autoradiography to examine [3H]mazindol ([3H]MAZ) binding to striatal DA transporters and [3H]GLU binding to N-methyl-D-aspartate (NMDA) receptors in the striatum and cortex 1 week and 1 month after a neurotoxic regimen of m-AMPH. Rats received m-AMPH (4 mg/kg) or saline (SAL) (1 ml/kg) in four s.c. injections separated by 2 h intervals. One week after m-AMPH, the ventral and lateral sectors of the striatum showed the greatest decreases in both [3H]MAZ and [3H]GLU binding, while the nucleus accumbens (NA) showed no significant decreases. One month after m-AMPH, striatal [3H]MAZ binding was still significantly decreased, while NMDA receptor binding had recovered. Surprisingly, the parietal cortex showed a m-AMPH-induced increase in NMDA receptor binding in layers II/III and IV 1 week after m-AMPH and only in layers II/III 1 month after m-AMPH. The prefrontal cortex showed no m-AMPH-induced changes in NMDA receptor binding at either time point. This is the first demonstration that a regimen of m-AMPH that results in long-lasting damage to DA terminals can alter forebrain NMDA receptor binding. Thus, repeated m-AMPH treatments may produce changes in glutamatergic transmission in selected striatal and cortical regions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验