Suppr超能文献

Mutational analysis of the major loop of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases. Effects on protein stability and substrate binding.

作者信息

Pons J, Querol E, Planas A

机构信息

Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.

出版信息

J Biol Chem. 1997 May 16;272(20):13006-12. doi: 10.1074/jbc.272.20.13006.

Abstract

The carbohydrate-binding cleft of Bacillus licheniformis 1,3-1, 4-beta-D-glucan 4-glucanohydrolase is partially covered by the surface loop between residues 51 and 67, which is linked to beta-strand-(87-95) of the minor beta-sheet III of the protein core by a single disulfide bond at Cys61-Cys90. An alanine scanning mutagenesis approach has been applied to analyze the role of loop residues from Asp51 to Arg64 in substrate binding and stability by means of equilibrium urea denaturation, enzyme thermotolerance, and kinetics. The DeltaDeltaGU between oxidized and reduced forms is approximately constant for all mutants, with a contribution of 5.3 +/- 0.2 kcal.mol-1 for the disulfide bridge to protein stability. A good correlation is observed between DeltaGU values by reversible unfolding and enzyme thermotolerance. The N57A mutant, however, is more thermotolerant than the wild-type enzyme, whereas it is slightly less stable to reversible urea denaturation. Mutants with a <2-fold increase in Km correspond to mutations at residues not involved in substrate binding, for which the reduction in catalytic efficiency (kcat/Km) is proportional to the loss of stability relative to the wild-type enzyme. Y53A, N55A, F59A, and W63A, on the other hand, show a pronounced effect on catalytic efficiency, with Km > 2-fold and kcat < 5% of the wild-type values. These mutated residues are directly involved in substrate binding or in hydrophobic packing of the loop. Interestingly, the mutation M58A yields an enzyme that is more active than the wild-type enzyme (7-fold increase in kcat), but it is slightly less stable.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验