Suppr超能文献

Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats.

作者信息

Becker H A, Kunze R

机构信息

Institut für Genetik, Universität zu Köln, Germany.

出版信息

Mol Gen Genet. 1997 Apr 16;254(3):219-30. doi: 10.1007/s004380050410.

Abstract

The mobility of maize transposable element Activator (Ac) is dependent on the 11-bp terminal inverted repeats (IRs) and approximately 250 subterminal nucleotides at each end. These sequences flank the coding region for the transposase (TPase) protein, which is required for the transposition reaction. Here we show that Ac TPase has a bipartite DNA binding domain, and recognizes the IRs and subterminal sequences in the Ac ends. TPase binds cooperatively to repetitive ACG and TCG sequences, of which 25 copies are found in the 5' and 20 copies in the 3' subterminal regions. TPase affinity is highest when these sites are flanked on the 3' side by an additional G residue (A/TCGG), which is found at 75% of binding sites. Moreover, TPase binds specifically to the Ac IRs, albeit with much lower affinity. Two mutations within the IRs that immobilize Ac abolish TPase binding completely. The basic DNA binding domain of TPase is split into two subdomains. Binding to the subterminal motifs is accomplished by the C-terminal subdomain alone, whereas recognition of the IRs requires the N-terminal subdomain in addition. Furthermore, TPase is extremely flexible in DNA binding. Two direct or inverted binding sites are bound equally well, and sites that are five to twelve bases apart are similarly well bound. The consequences of these findings for the Ac transposition reaction are discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验