Tran-Dinh S, Hoerter J A, Mateo P, Bouet F, Herve M
Département de Biologie Cellulaire et Moléculaire, CEN Saclay, Gif-sur-Yvette, France.
Eur J Biochem. 1997 Apr 15;245(2):497-504. doi: 10.1111/j.1432-1033.1997.t01-2-00497.x.
We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C-NMR and 1H-NMR spectroscopy. We demonstrate that 13C-NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments. Wistar rat hearts (five beating and four KCl-arrested hearts) were aerobically perfused with 100% enriched [2-(13)C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 +/- 0.003 min(-1) for beating hearts and 0.0741 +/- 0.004 min(-1) for KCl-arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl-arrested hearts are 1.06 +/- 0.06 micromol x min(-1) x mg(-1) and 0.21 +/- 0.02 micromol x min(-1) x g(-1), respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 +/- 1.7% and 8.8 +/- 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2-oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half-time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species.
我们提出了一种简单的数学模型和一种实用方法,用于通过(^{13}C - NMR)和(^{1}H - NMR)光谱法评估灌注器官中柠檬酸循环的通量常数和通量绝对值。我们证明,除非两个区室中谷氨酸碳的(^{13}C)化学位移存在差异,否则(^{13}C - NMR)谷氨酸光谱与线粒体和胞质区室的相对大小以及谷氨酸的交换速率无关。用(100%)富集的([2-(^{13}C)])乙酸对Wistar大鼠心脏(五颗跳动的心脏和四颗用氯化钾停搏的心脏)进行有氧灌注,并在不同灌注时间研究高氯酸提取物中谷氨酸碳标记的动力学。在我们的实验条件下,代表单位时间内与柠檬酸循环交换的谷氨酸比例的柠檬酸循环通量常数,对于跳动的心脏约为(0.350\pm0.003) (min^{-1}),对于用氯化钾停搏的心脏约为(0.0741\pm0.004) (min^{-1})。跳动的心脏和用氯化钾停搏的心脏的柠檬酸通量绝对值分别为(1.06\pm0.06) (μmol\cdot min^{-1}\cdot mg^{-1})和(0.21\pm0.02) (μmol\cdot min^{-1}\cdot g^{-1})。从甲基质子信号确定的未标记乙酸的比例很小,在跳动的心脏和停搏的心脏中基本相同(分别为(7.4\pm1.7%)和(8.8\pm2.1%))。因此,跳动的心脏和停搏的心脏之间谷氨酸(C2/C4)的巨大差异不是由于停搏的心脏中回补途径来源的重要贡献,而仅仅是由于柠檬酸循环通量的显著差异。我们的模型与实验数据拟合良好,表明大鼠心脏线粒体中(2 - 氧代戊二酸和谷氨酸之间存在快速交换。根据文献中给出的谷氨酸(C4)标记半衰期计算通量常数,有助于比较不同动物物种在各种工作条件下的柠檬酸通量。