Yu X, White L T, Doumen C, Damico L A, LaNoue K F, Alpert N M, Lewandowski E D
NMR Center, Massachusetts General Hospital, Boston, USA.
Biophys J. 1995 Nov;69(5):2090-102. doi: 10.1016/S0006-3495(95)80080-9.
Control of oxidative metabolism was studied using 13C NMR spectroscopy to detect rate-limiting steps in 13C labeling of glutamate. 13C NMR spectra were acquired every 1 or 2 min from isolated rabbit hearts perfused with either 2.5 mM [2-13C]acetate or 2.5 mM [2-13C]butyrate with or without KCl arrest. Tricarboxylic acid cycle flux (VTCA) and the exchange rate between alpha-ketoglutarate and glutamate (F1) were determined by least-square fitting of a kinetic model to NMR data. Rates were compared to measured kinetics of the cardiac glutamate-oxaloacetate transaminase (GOT). Despite similar oxygen use, hearts oxidizing butyrate instead of acetate showed delayed incorporation of 13C label into glutamate and lower VTCA, because of the influence of beta-oxidation: butyrate = 7.1 +/- 0.2 mumol/min/g dry wt; acetate = 10.1 +/- 0.2; butyrate + KCl = 1.8 +/- 0.1; acetate + KCl = 3.1 +/- 0.1 (mean +/- SD). F1 ranged from a low of 4.4 +/- 1.0 mumol/min/g (butyrate + KCl) to 9.3 +/- 0.6 (acetate), at least 20-fold slower than GOT flux, and proved to be rate limiting for isotope turnover in the glutamate pool. Therefore, dynamic 13C NMR observations were sensitive not only to TCA cycle flux but also to the interconversion between TCA cycle intermediates and glutamate.
利用13C核磁共振波谱法研究氧化代谢的控制,以检测谷氨酸13C标记中的限速步骤。从灌注有2.5 mM [2-13C]乙酸盐或2.5 mM [2-13C]丁酸盐(有或无KCl停搏)的离体兔心脏中,每1或2分钟采集一次13C核磁共振波谱。通过将动力学模型与核磁共振数据进行最小二乘拟合,确定三羧酸循环通量(VTCA)和α-酮戊二酸与谷氨酸之间的交换率(F1)。将这些速率与所测量的心脏谷氨酸-草酰乙酸转氨酶(GOT)的动力学进行比较。尽管耗氧量相似,但由于β-氧化的影响,氧化丁酸盐而非乙酸盐的心脏将13C标记掺入谷氨酸的过程延迟,且VTCA较低:丁酸盐=7.1±0.2 μmol/min/g干重;乙酸盐=10.1±0.2;丁酸盐+KCl=1.8±0.1;乙酸盐+KCl=3.1±0.1(平均值±标准差)。F1范围从低至4.4±1.0 μmol/min/g(丁酸盐+KCl)到9.3±0.6(乙酸盐),比GOT通量慢至少20倍,并且被证明是谷氨酸池中同位素周转的限速因素。因此,动态13C核磁共振观察不仅对三羧酸循环通量敏感,而且对三羧酸循环中间产物与谷氨酸之间的相互转化也敏感。