Suppr超能文献

七鳃鳗中网状脊髓神经元的生理和解剖特征

Physiological and anatomical characteristics of reticulospinalneurones in lamprey.

作者信息

Wickelgren W O

出版信息

J Physiol. 1977 Aug;270(1):89-114. doi: 10.1113/jphysiol.1977.sp011940.

Abstract
  1. Intracellular records were obtained from giant reticulospinal cells (Müller cells) in the brain of adult lamprey. The cells had maximum resting potentials of -80 mV and action potentials with overshoots of 30 mV. Input resistances varied from 2 to 8 MOmega.2. Individual spontaneous excitatory and inhibitory synaptic potentials (e.p.s.p.s and i.p.s.p.s) were observed, as well as occasional high frequency bursts of excitatory potentials. Much of the spontaneous synaptic activity could be eliminated by elevating the Ca(2+) concentration in the bathing solution to 10-15 mM, suggesting that the synaptic potentials were due to spike activity in elements presynaptic to Müller cells.3. Electrical stimulation of cranial nerves produced synaptic responses in Müller cells. Ipsilateral vestibular nerve stimulation produced i.p.s.p.s; contralateral stimulation, e.p.s.p.s. Stimulation of either optic nerve produced mixed synaptic responses with e.p.s.p.s dominating in cells with large resting potentials. Trigeminal nerve stimulation produced mixed responses. Olfactory nerve stimulation produced excitation. Spinal cord stimulation produced e.p.s.p.s and i.p.s.p.s, the dominant effect being inhibition.4. In favourable preparations strong electrical stimulation of cranial nerves produced afterdisharges in Müller cells, lasting from a few seconds after stimulation of the olfactory and vestibular nerves to as long as several minutes after optic, trigeminal or spinal cord stimulation.5. Natural stimulation of tactile, visual and vestibular receptors resulted in synaptic responses similar to those produced by electrical stimulation of the cranial nerves. Fish odour applied to the olfactory mucosa produced no response.6. Iontophoretic application of L-glutamate to Müller cells produced depolarization accompanied by a decrease in input resistance. In addition, glutamate produced bursts of inhibitory and excitatory synaptic potentials, presumably by depolarizing excitatory or inhibitory nerve terminals or nearby cell bodies.7. Iontophoretic application of gamma-aminobutyric acid (GABA) resulted in a slight hyperpolarization, accompanied by a large reduction in input resistance. The reversal point both of the hyperpolarizations and of the spontaneous inhibitory post-synaptic potentials was about 6 mV greater than the resting potential.8. There were two types of synaptic ending on Müller cell bodies, one type containing round vesicles and the other containing ellipsoidal vesicles. These terminals were intermixed over the surface of the cell bodies and dendrites with no readily apparent segregation.9. Intracellular records from the spinal axons of Müller cells during electrical stimulation of cranial nerves and spinal cord showed, in addition to the normal propagating action potential activity which normally originates in the cell bodies, depolarizing, hyperpolarizing and biphasic evoked potentials. These membrane responses were grossly similar in appearance to synaptic potentials except that the large depolarizing potentials had unusually long decay times. The physiological basis of these potentials remains unclear.10. Electron microscopic examination showed very few synaptic endings afferent to Müller axons, a finding in contrast to the abundance of synaptic-like potentials recorded. However, the occasional synapses afferent to Müller axons were invariably located near an efferent synaptic region of the axon itself. This raises the possibility that a very limited number of synaptic regions of Müller axons may be subject to presynaptic modulation of transmitter release.11. The observations reported here support the idea that Müller cells in lamprey are an important motor outflow from the brain and serve to coordinate the lamprey's trunk responses to external sensory stimulation.
摘要
  1. 从成年七鳃鳗大脑中的巨型网状脊髓细胞(米勒细胞)获取细胞内记录。这些细胞的最大静息电位为 -80 mV,动作电位超射为30 mV。输入电阻在2至8兆欧之间变化。

  2. 观察到了单个的自发性兴奋性和抑制性突触电位(兴奋性突触后电位和抑制性突触后电位),以及偶尔出现的高频兴奋性电位爆发。通过将浴液中的Ca(2+)浓度提高到10 - 15 mM,大部分自发性突触活动可以消除,这表明突触电位是由米勒细胞突触前元件的锋电位活动引起的。

  3. 对脑神经进行电刺激在米勒细胞中产生突触反应。同侧前庭神经刺激产生抑制性突触后电位;对侧刺激产生兴奋性突触后电位。刺激任一视神经产生混合突触反应,在静息电位较大的细胞中兴奋性突触后电位占主导。三叉神经刺激产生混合反应。嗅神经刺激产生兴奋。脊髓刺激产生兴奋性突触后电位和抑制性突触后电位,主要作用是抑制。

  4. 在有利的标本中,对脑神经进行强电刺激会在米勒细胞中产生后放电,持续时间从刺激嗅神经和前庭神经后的几秒钟到刺激视神经、三叉神经或脊髓后的长达几分钟。

  5. 对触觉、视觉和前庭感受器的自然刺激导致的突触反应与对脑神经进行电刺激所产生的反应相似。将鱼的气味施加到嗅黏膜上未产生反应。

  6. 向米勒细胞离子导入L - 谷氨酸会产生去极化,同时输入电阻降低。此外,谷氨酸会产生抑制性和兴奋性突触电位爆发,推测是通过使兴奋性或抑制性神经末梢或附近的细胞体去极化实现的。

  7. 向米勒细胞离子导入γ - 氨基丁酸(GABA)会导致轻微的超极化,同时输入电阻大幅降低。超极化和自发性抑制性突触后电位的反转点比静息电位大约高6 mV。

  8. 在米勒细胞体上有两种类型的突触末梢,一种含有圆形小泡,另一种含有椭圆形小泡。这些末梢在细胞体和树突表面混合分布,没有明显的分隔。

  9. 在对脑神经和脊髓进行电刺激期间,从米勒细胞的脊髓轴突进行细胞内记录显示,除了通常起源于细胞体的正常传播动作电位活动外,还有去极化、超极化和双相诱发电位。这些膜反应在外观上与突触电位非常相似,只是大的去极化电位具有异常长的衰减时间。这些电位的生理基础仍不清楚。

  10. 电子显微镜检查显示,传入米勒轴突的突触末梢非常少,这一发现与记录到的大量类似突触电位形成对比。然而,偶尔传入米勒轴突的突触总是位于轴突本身的传出突触区域附近。这增加了一种可能性,即米勒轴突中非常有限数量的突触区域可能受到递质释放的突触前调制。

  11. 此处报告的观察结果支持这样一种观点,即七鳃鳗中的米勒细胞是大脑重要的运动输出途径,有助于协调七鳃鳗躯干对外界感觉刺激的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6e/1353419/c40a8a699b70/jphysiol00800-0137-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验