Suppr超能文献

神经元烟碱型乙酰胆碱受体亚型的药理学

Pharmacology of neuronal nicotinic acetylcholine receptor subtypes.

作者信息

Colquhoun L M, Patrick J W

机构信息

Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Adv Pharmacol. 1997;39:191-220. doi: 10.1016/s1054-3589(08)60072-1.

Abstract

The search for the physiological function of nicotinic receptors on neurons in the brain began with their discovery. It was initially assumed that, as in ganglia and at the neuromuscular junction, nicotinic receptors would gate fast synaptic transmission in the brain. The best functional evidence now, however, points to a role in modifying the release of other transmitters. This does not preclude a postsynaptic role in transmission for nicotinic receptors in the brain, but attempts to locate such a synapse have not been successful. If fast nicotinic synapses are present in the brain, they are probably low in number and may be masked by other more prevalent synapses (such as glutamatergic) so identification will not be easy. The extent of diversity of nicotinic receptors is substantial. At the molecular level this is reflected in the number of different genes that encode receptor subunits and the multiple possible combinations of subunits that function in expression systems. From the cellular level there is a broad diversity of properties of native receptors in neurons. Some useful pharmacological tools allow the limited identification of subunits in native receptors. For example, block by alpha-bungarotoxin identifies alpha 7, alpha 8, or alpha 9 subunits; activation of a receptor by cytisine indicates an alpha 7 or beta 4 subunit; and neuronal bungarotoxin block identifies a beta 2 subunit. Despite the clues to identity gained by careful use of these agents, we have not been able to identify all the components of any native receptor based on pharmacological properties assessed from expression studies. When both pharmacological and biophysical properties of a receptor are taken into consideration, none of the combinations tested in oocytes mimics native receptors exactly. The reason for this discrepancy has been debated at length; it is possible that oocytes do not faithfully manufacture neuronal nicotinic receptors. For example, they may not correctly modify the protein after translation or they may allow a combination of subunits that do not occur in vivo. Another possibility is that correct combinations of subunits have not yet been tested in oocytes. Data from immunoprecipitation experiments suggest that many receptors contain three or more different subunits. Results from further experiments injecting combinations of three or more subunits into oocytes may be enlightening. The diversity of receptors may allow targeting of subtypes to specific locations. Nicotinic receptors are located presynaptically, preterminally, and on the cell soma. The function of the nicotinic receptors located on innervating axons is presumably to modify the release of other neurotransmitters. It is an attractive hypothesis that nicotinic receptors might be involved in modifying the weight of central synapses; however, in none of the regions where this phenomenon has been described is there any evidence for axoaxonal contacts. The presynaptic receptors described so far are pharmacologically unique; therefore, if there are different subtypes of nicotinic receptors modifying the release of different transmitters, they may provide a means of exogenously modifying the release of a particular transmitter with drugs. There are still many basic unanswered questions about nicotinic receptors in the brain. What are the compositions of native nicotinic receptors? What is their purpose on neurons? Although there is clearly a role presynaptically, what is the function of those located on the soma? Neuronal nicotinic receptors are highly permeable to calcium, unlike muscle nicotinic receptors, and this may have important implications for roles in synaptic plasticity and development. Finally, why is there such diversity? (ABSTRACT TRANCATED)

摘要

对大脑神经元烟碱型受体生理功能的探索始于其被发现之时。最初人们认为,如同在神经节和神经肌肉接头处一样,烟碱型受体在大脑中会控制快速突触传递。然而,目前最有力的功能证据表明其作用在于调节其他递质的释放。这并不排除烟碱型受体在大脑突触后传递中的作用,但试图找到这样的突触尚未成功。如果大脑中存在快速烟碱型突触,它们的数量可能很少,并且可能被其他更普遍的突触(如谷氨酸能突触)所掩盖,因此识别并不容易。

烟碱型受体的多样性程度很高。在分子水平上,这体现在编码受体亚基的不同基因数量以及在表达系统中起作用的亚基的多种可能组合上。从细胞水平来看,神经元中天然受体的特性具有广泛的多样性。一些有用的药理学工具可对天然受体中的亚基进行有限的识别。例如,α - 银环蛇毒素的阻断可识别α7、α8或α9亚基;金雀花碱对受体的激活表明存在α7或β4亚基;神经元型银环蛇毒素的阻断可识别β2亚基。尽管通过谨慎使用这些试剂获得了一些关于受体身份的线索,但基于表达研究评估的药理学特性,我们仍无法确定任何天然受体的所有成分。当同时考虑受体的药理学和生物物理学特性时,在卵母细胞中测试的任何组合都不能完全模拟天然受体。这种差异的原因已被详细讨论;有可能卵母细胞不能如实地制造神经元烟碱型受体。例如,它们可能在翻译后不能正确修饰蛋白质,或者可能允许在体内不会出现的亚基组合。另一种可能性是尚未在卵母细胞中测试亚基的正确组合。免疫沉淀实验的数据表明,许多受体包含三种或更多不同的亚基。将三种或更多亚基的组合注入卵母细胞的进一步实验结果可能会有启发。

受体的多样性可能使亚型能够靶向特定位置。烟碱型受体位于突触前、突触前终末和细胞体上。位于支配轴突上的烟碱型受体的功能大概是调节其他神经递质的释放。烟碱型受体可能参与调节中枢突触权重,这是一个有吸引力的假设;然而,在已描述这种现象的任何区域,都没有轴 - 轴突接触的证据。到目前为止所描述的突触前受体在药理学上是独特的;因此,如果存在不同亚型的烟碱型受体调节不同递质的释放,它们可能提供一种用药物外源调节特定递质释放的方法。

关于大脑中的烟碱型受体,仍然有许多基本问题未得到解答。天然烟碱型受体的组成是什么?它们在神经元上的作用是什么?虽然在突触前显然有作用,但位于细胞体上的受体的功能是什么?与肌肉烟碱型受体不同,神经元烟碱型受体对钙具有高度通透性,这可能对其在突触可塑性和发育中的作用具有重要意义。最后,为什么会有如此高的多样性?(摘要截选)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验