Werner C, Reeker W, Engelhard K, Lu H, Kochs E
Institut für Anaesthesiologie, Technische Universität München.
Anaesthesist. 1997 Mar;46 Suppl 1:S55-60. doi: 10.1007/pl00002466.
The phencyclidine derivative ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist with the thalamo-neocortical projection system as the primary site of action. Racemic ketamine consists of the enantiomers S(+)-ketamine and R(-)-ketamine. Racemic ketamine has never been considered an adequate anaesthetic agent in neurosurgical patients since it produces regionally specific stimulation of cerebral metabolism (CMRO2) and increases cerebral blood flow (CBF) and intracranial pressure (ICP). However, recent experiments suggest that both tracemic ketamine and S(+)-ketamine may reduce infarct size in animal models of incomplete cerebral ischaemia and brain injury. This experimental protective effect appears to be related to decreases in Ca++ influx and maintenance of brain tissue magnesium levels due to NMDA and quisqualate receptor blockade by ketamine. Studies in dogs have shown that racemic ketamine (2.0 mg/kg) increases CBF in the presence of the cerebral vasodilator N2O. In contrast, studies in rats without background anaesthesia showed increases in CBF after racemic ketamine (100 mg/kg i.p.). This suggests that the cerebrovascular effects of racemic ketamine are related to the pre-existing cerebrovascular tone induced by background anaesthetics. Cerebrovascular CO2 reactivity was maintained regardless of the baseline cerebrovascular resistance. There are several mechanisms by which racemic ketamine may increase CBF. It induces dose-dependent respiratory depression with consequent mild hypercapnia in spontaneously ventilating subjects. This produces vasodilation due to the intact cerebrovascular CO2 reactivity. Racemic ketamine also induces regional neuroexcitation, which leads to stimulation of cerebral glucose consumption in the limbic, extrapyramidal, auditory, and sensory-motor systems. This regional neuroexcitation with increased CMRO2 produces increases in CBF that can be blocked by infusion of barbiturates or benzodiazepines. However, increases in CBF with racemic ketamine (1 mg/kg) may also occur during normocapnia and without changes in CMRO2. This effect is related to some additional direct cerebral vasodilating potency of racemic ketamine based on a mechanism involving blockade of Ca++ channels. The effects of racemic ketamine on CBF autoregulation have not been investigated systematically. However, studies in rats have shown that CBF autoregulation was maintained with low- and high-dose S(+)-ketamine. Infusion of racemic ketamine alters intracranial volume and ICP. Studies in spontaneously ventilating pigs with and without intracranial hypertension have shown that racemic ketamine (0.5-5.0 mg/kg) produces increases in PaCO2 and ICP. In contrast, identical experiments with mechanical ventilation and controlled PaCO2 showed no changes in ICP following racemic ketamine infusion. This implies that increases in ICP are related to inadequate ventilation with consecutive hypercapnia and increases in intracranial blood volume. However, mechanical ventilation may not be sufficient to control ICP following racemic ketamine. Experiments in mechanically ventilated dogs indicate that racemic ketamine (2 mg/kg) increases cerebral blood volume and ICP even in the presence of normoventilation, a response that is reversible by hyperventilation or the administration of diazepam. Studies in patients have shown that racemic ketamine (2.0 mg/kg) reduces CBF in the presence of cerebral vasodilators like halothane or N2O. In contrast, studies in unanaesthetised humans showed increases in CBF after racemic ketamine (2-3 mg/kg). This observation is consistent with animal studies and suggests that the cerebrovascular effects of racemic ketamine are related to the pre-existing cerebrovascular tone induced by background anaesthetics. Studies in humans with and without intracranial pathology confirm the data from animal experiments. (ABSTRACT TRUNCATED)
苯环己哌啶衍生物氯胺酮是一种非竞争性N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,主要作用于丘脑-新皮质投射系统。消旋氯胺酮由对映体S(+)-氯胺酮和R(-)-氯胺酮组成。消旋氯胺酮从未被认为是神经外科手术患者的合适麻醉剂,因为它会引起脑代谢(CMRO2)的区域特异性刺激,并增加脑血流量(CBF)和颅内压(ICP)。然而,最近的实验表明,消旋氯胺酮和S(+)-氯胺酮在不完全性脑缺血和脑损伤的动物模型中都可能减小梗死灶大小。这种实验性保护作用似乎与氯胺酮阻断NMDA和喹啉酸受体导致Ca++内流减少以及脑组织镁水平维持有关。对犬的研究表明,在存在脑血管扩张剂N2O的情况下,消旋氯胺酮(2.0mg/kg)会增加CBF。相比之下,对无背景麻醉的大鼠的研究表明,消旋氯胺酮(100mg/kg腹腔注射)后CBF增加。这表明消旋氯胺酮的脑血管效应与背景麻醉剂诱导的预先存在的脑血管张力有关。无论基线脑血管阻力如何,脑血管对CO2的反应性都得以维持。消旋氯胺酮可能通过多种机制增加CBF。它会诱导剂量依赖性呼吸抑制,从而使自主呼吸的受试者出现轻度高碳酸血症。由于完整的脑血管对CO2的反应性,这会导致血管扩张。消旋氯胺酮还会诱导局部神经兴奋,从而导致边缘系统、锥体外系、听觉和感觉运动系统中的脑葡萄糖消耗增加。这种伴有CMRO2增加的局部神经兴奋会导致CBF增加,而输注巴比妥类药物或苯二氮䓬类药物可阻断这种增加。然而,消旋氯胺酮(1mg/kg)在正常碳酸血症期间且CMRO2无变化时也可能导致CBF增加。这种效应与消旋氯胺酮基于涉及阻断Ca++通道的机制的一些额外的直接脑血管扩张作用有关。尚未系统研究消旋氯胺酮对CBF自动调节的影响。然而,对大鼠的研究表明,低剂量和高剂量的S(+)-氯胺酮可维持CBF自动调节。输注消旋氯胺酮会改变颅内容量和ICP。对有和没有颅内高压的自主呼吸猪的研究表明,消旋氯胺酮(0.5 - 5.0mg/kg)会导致PaCO2和ICP升高。相比之下,在机械通气和控制PaCO2的相同实验中,输注消旋氯胺酮后ICP无变化。这意味着ICP升高与通气不足导致的连续性高碳酸血症和颅内血容量增加有关。然而,机械通气可能不足以控制消旋氯胺酮后的ICP。对机械通气犬的实验表明,消旋氯胺酮(2mg/kg)即使在正常通气情况下也会增加脑血容量和ICP,这种反应可通过过度通气或给予地西泮逆转。对患者的研究表明,在存在氟烷或N2O等脑血管扩张剂的情况下,消旋氯胺酮(2.0mg/kg)会降低CBF。相比之下,对未麻醉人类的研究表明,消旋氯胺酮(2 - 3mg/kg)后CBF增加。这一观察结果与动物研究一致,表明消旋氯胺酮的脑血管效应与背景麻醉剂诱导的预先存在的脑血管张力有关。对有和没有颅内病变的人类的研究证实了动物实验的数据。(摘要截断)