Suppr超能文献

Partial purification of Pde1 from Saccharomyces cerevisiae: enzymatic redundancy for the repair of 3'-terminal DNA lesions and abasic sites in yeast.

作者信息

Sander M, Ramotar D

机构信息

Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

出版信息

Biochemistry. 1997 May 20;36(20):6100-6. doi: 10.1021/bi970048y.

Abstract

Earlier work indicates that the major DNA repair phosphodiesterase (PDE) in yeast cells is the well-characterized Apn1 protein. Apn1 demonstrates both Mg2+-independent PDE activity and Mg2+-independent class II apurinic/apyrimidinic (AP) endonuclease activity and represents greater than 90% of the activity detected in crude extracts from wild-type yeast cells. Apn1 is related to Echerichia coli endonuclease IV, both in its enzymatic properties and its amino acid sequence. In this work, we report the partial purification of a novel yeast protein, Pde1, present in Apn1-deficient cells. Pde1 is purified by sequential BioRex-70, PBE118, and MonoS chromatography steps using a sensitive and highly specific 3'-phosphoglycolate-terminated oligonucleotide-based assay as a measure of PDE activity. Mg2+-stimulated PDE and Mg2+-stimulated class II AP endonuclease copurify during this procedure. These results indicate that yeast, like many other organisms studied to date, has enzymatic redundancy for the repair of 3'-blocking groups and abasic sites.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验