Suppr超能文献

基于两幅投影图像改进双平面成像几何的确定及其在冠状动脉树三维重建中的应用。

Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees.

作者信息

Chen S Y, Metz C E

机构信息

Department of Radiology, University of Chicago, Illinois, USA.

出版信息

Med Phys. 1997 May;24(5):633-54. doi: 10.1118/1.598129.

Abstract

A technique has been developed for accurate estimation of three-dimensional (3D) biplane imaging geometry and reconstruction of 3D objects based on two perspective projections acquired at arbitrary orientations, without the need of calibration. The required prior information (i.e., the intrinsic parameters of each single-plane imaging system) for determination of biplane imaging geometry includes (a) the distance between each focal spot and its image plane, SID (the focal-spot to imaging-plane distance); (b) the pixel size, psize (e.g., 0.3 mm/pixel); (c) the distance between the two focal spots ff' or the known 3D distance between two points in the projection images; and (d) for each view, an approximation of the magnification factor, MF (e.g., 1.2), which is the ratio of the SID and the approximate distance of the object to the focal spot. Item (d) is optional but may provide a more accurate estimation if it is available. Given five or more corresponding object points in both views, a constrained nonlinear optimization algorithm is applied to obtain an optimal estimate of the biplane imaging geometry in the form of a rotation matrix R and a translation vector t that characterize the position and orientation of one imaging system relative to the other. With the calculated biplane imaging geometry, 3D spatial information concerning the object can then be reconstructed. The accuracy of this method was evaluated by using a computer-simulated coronary arterial tree and a cube phantom object. Our simulation study showed that a computer-simulated coronary tree can be reconstructed from two views with less than 2 and 8.4 mm root-mean-square (rms) configuration (or relative-position) error and absolute-position error, respectively, even if the input errors in the corresponding 2D points are fairly large (more than two pixels = 0.6 mm). In contrast, input image error of more than one pixel (= 0.3 mm) can yield 3D position errors of 10 cm or more when other existing methods based on linear approaches are employed. For the cube phantom images acquired from a routine biplane system, rms errors in the 3D configuration of the cube and the 3D absolute position were 0.6-0.9 mm and 3.9-5.0 mm, respectively.

摘要

已开发出一种技术,可基于在任意方向获取的两个透视投影,精确估计三维(3D)双平面成像几何结构并重建3D物体,无需校准。确定双平面成像几何结构所需的先验信息(即每个单平面成像系统的固有参数)包括:(a)每个焦点与其图像平面之间的距离,即源像距(焦点到成像平面的距离);(b)像素大小,例如0.3毫米/像素;(c)两个焦点之间的距离ff'或投影图像中两点之间已知的3D距离;以及(d)对于每个视图,放大倍数的近似值MF(例如1.2),它是源像距与物体到焦点的近似距离之比。项目(d)是可选的,但如果可用,可能会提供更准确的估计。给定两个视图中五个或更多相应的物体点,应用约束非线性优化算法以旋转矩阵R和平移向量t的形式获得双平面成像几何结构的最佳估计,旋转矩阵R和平移向量t表征一个成像系统相对于另一个成像系统的位置和方向。利用计算出的双平面成像几何结构,然后可以重建有关物体的3D空间信息。通过使用计算机模拟的冠状动脉树和立方体模型物体评估了该方法的准确性。我们的模拟研究表明,即使相应二维点中的输入误差相当大(超过两个像素 = 0.6毫米),也可以从两个视图重建计算机模拟的冠状动脉树,其根均方(rms)配置(或相对位置)误差和绝对位置误差分别小于2毫米和8.4毫米。相比之下,当采用其他基于线性方法的现有方法时,超过一个像素(= 0.3毫米)的输入图像误差会产生10厘米或更大的3D位置误差。对于从常规双平面系统获取的立方体模型图像,立方体的3D配置和3D绝对位置的rms误差分别为0.6 - 0.9毫米和3.9 - 5.0毫米。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验