Suppr超能文献

医学中的光学成像:II. 建模与重建。

Optical imaging in medicine: II. Modelling and reconstruction.

作者信息

Arridge S R, Hebden J C

机构信息

Department of Computer Science, University College London, UK.

出版信息

Phys Med Biol. 1997 May;42(5):841-53. doi: 10.1088/0031-9155/42/5/008.

Abstract

The desire for a diagnostic optical imaging modality has motivated the development of image reconstruction procedures involving solution of the inverse problem. This approach is based on the assumption that, given a set of measurements of transmitted light between pairs of points on the surface of an object, there exists a unique three-dimensional distribution of internal scatterers and absorbers which would yield that set. Thus imaging becomes a task of solving an inverse problem using an appropriate model of photon transport. In this paper we examine the models that have been developed for this task, and review current approaches to image reconstruction. Specifically, we consider models based on radiative transfer theory and its derivatives, which are either stochastic in nature (random walk, Monte Carlo, and Markov processes) or deterministic (partial differential equation models and their solutions). Image reconstruction algorithms are discussed which are based on either direct backprojection, perturbation methods, nonlinear optimization, or Jacobian calculation. Finally we discuss some of the fundamental problems that must be addressed before optical tomography can be considered to be an understood problem, and before its full potential can be realized.

摘要

对诊断性光学成像模态的需求推动了涉及逆问题求解的图像重建程序的发展。这种方法基于这样一种假设:给定物体表面上各点对之间透射光的一组测量值,存在唯一的内部散射体和吸收体的三维分布,该分布会产生那组测量值。因此,成像就变成了使用适当的光子传输模型来求解逆问题的任务。在本文中,我们研究了为此任务开发的模型,并回顾了当前的图像重建方法。具体来说,我们考虑基于辐射传输理论及其衍生理论的模型,这些模型本质上要么是随机的(随机游走、蒙特卡罗和马尔可夫过程),要么是确定性的(偏微分方程模型及其解)。讨论了基于直接反投影、微扰方法、非线性优化或雅可比计算的图像重建算法。最后,我们讨论了在光学层析成像被认为是一个已理解的问题以及其全部潜力得以实现之前必须解决的一些基本问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验