Suppr超能文献

肠系膜明串珠菌NRRL B - 1299在各种糖类代谢过程中的生长与能量代谢及其对葡聚糖蔗糖酶产生的影响

Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production.

作者信息

Dols M, Chraibi W, Remaud-Simeon M, Lindley N D, Monsan P F

机构信息

Centre de Bioingénieric Gilbert Durand, Centre National de la Recherche Scientifique 5504, Toulouse, France.

出版信息

Appl Environ Microbiol. 1997 Jun;63(6):2159-65. doi: 10.1128/aem.63.6.2159-2165.1997.

Abstract

The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.

摘要

为了更好地理解影响葡聚糖蔗糖酶活性的参数,从而制定提高葡聚糖蔗糖酶产量的策略,已对肠系膜明串珠菌的代谢和能量特性进行了研究。在有氧条件下,葡萄糖和果糖支持相同的比生长速率(0.6 h-1),但在厌氧条件下,葡萄糖能产生更高的生物量产量。两种糖都通过特定的己糖激酶磷酸化,并通过异型发酵磷酸酮醇酶途径进行分解代谢。在蔗糖培养过程中,很大一部分蔗糖在细胞外被葡聚糖蔗糖酶转化为葡聚糖和果糖,不支持生长。另一部分进入细胞,在那里被诱导型蔗糖磷酸化酶磷酸化,并通过组成型磷酸葡萄糖变位酶转化为6-磷酸葡萄糖(G-6-P),进而转化为异型发酵产物(乳酸、乙酸和乙醇)。蔗糖支持的生长速率(0.98 h-1)高于单糖。当果糖不与1-磷酸葡萄糖同时消耗时,相对于ATP的生物量产量较高(每摩尔蔗糖16.8摩尔ATP),并且葡聚糖蔗糖酶的产量与生长直接成正比。然而,当果糖部分被利用时,会观察到能量消耗,并且葡聚糖蔗糖酶的产量不再与生长相关。因此,为了提高合成的葡聚糖蔗糖酶的量,必须避免果糖分解代谢。

相似文献

2
Induction and transcription studies of the dextransucrase gene in Leuconostoc mesenteroides NRRL B-512F.
Appl Environ Microbiol. 1999 Dec;65(12):5504-9. doi: 10.1128/AEM.65.12.5504-5509.1999.
3
Properties of Leuconostoc mesenteroides B-512FMC constitutive dextransucrase.
Enzyme Microb Technol. 1994 Dec;16(12):1010-5. doi: 10.1016/0141-0229(94)90134-1.
4
Dextran biosynthesis and dextransucrase production by continuous culture of Leuconostoc mesenteroides.
Biotechnol Bioeng. 1979 Jul;21(7):1121-31. doi: 10.1002/bit.260210704.
5
Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F.
Bioprocess Biosyst Eng. 2003 Nov;26(1):57-62. doi: 10.1007/s00449-003-0330-4. Epub 2003 Sep 20.
7
Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose.
Appl Environ Microbiol. 1994 May;60(5):1459-66. doi: 10.1128/aem.60.5.1459-1466.1994.
8
Construction of a dextran-free Leuconostoc citreum mutant by targeted disruption of the dextransucrase gene.
J Appl Microbiol. 2014 Oct;117(4):1104-12. doi: 10.1111/jam.12587. Epub 2014 Jul 14.
10
Production, purification, and properties of dextransucrase from Leuconostoc mesenteroides NRRL B-512F.
Carbohydr Res. 1979 Jan;68(1):95-111. doi: 10.1016/s0008-6215(00)84059-8.

引用本文的文献

1
Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides.
Nat Commun. 2025 Jan 29;16(1):1145. doi: 10.1038/s41467-025-56470-0.
4
Host metabolic benefits of prebiotic exopolysaccharides produced by .
Gut Microbes. 2023 Jan-Dec;15(1):2161271. doi: 10.1080/19490976.2022.2161271.
5
Mixed Acid Fermentation of Carbohydrate-Rich Dairy Manure Hydrolysate.
Front Bioeng Biotechnol. 2021 Aug 3;9:724304. doi: 10.3389/fbioe.2021.724304. eCollection 2021.
6
Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community.
Nat Microbiol. 2021 Feb;6(2):196-208. doi: 10.1038/s41564-020-00816-5. Epub 2021 Jan 4.
7
The Microbiome of Leonardo da Vinci's Drawings: A Bio-Archive of Their History.
Front Microbiol. 2020 Nov 20;11:593401. doi: 10.3389/fmicb.2020.593401. eCollection 2020.

本文引用的文献

1
PRODUCTION FROM SUCROSE OF A-SERO-LOGICALLY REACTIVE POLYSACCHARIDE BY A STERILE BACTERIAL EXTRACT.
Science. 1941 Mar 7;93(2410):237-8. doi: 10.1126/science.93.2410.237.
2
The enzymic production of levan.
Biochem J. 1943 Oct;37(4):450-6. doi: 10.1042/bj0370450.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
Dextransucrase, an induced enzyme from Leuconostoc mesenteroides.
Biochemistry. 1962 Nov;1:1136-40. doi: 10.1021/bi00912a027.
6
The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides.
J Bacteriol. 1952 Oct;64(4):521-6. doi: 10.1128/jb.64.4.521-526.1952.
8
Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose.
Appl Environ Microbiol. 1994 May;60(5):1459-66. doi: 10.1128/aem.60.5.1459-1466.1994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验