Suppr超能文献

相似文献

2
Hg2+ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor.
Biotechnol Prog. 1998 Sep-Oct;14(5):667-71. doi: 10.1021/bp980072i.
3
Genetic engineering of bacteria and their potential for Hg2+ bioremediation.
Biodegradation. 1997;8(2):97-103. doi: 10.1023/a:1008233704719.
4
Construction and characterization of an Escherichia coli strain genetically engineered for Ni(II) bioaccumulation.
Appl Environ Microbiol. 2000 Dec;66(12):5383-6. doi: 10.1128/AEM.66.12.5383-5386.2000.
5
Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding.
J Bacteriol. 1992 Oct;174(20):6377-85. doi: 10.1128/jb.174.20.6377-6385.1992.
6
Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli.
Biol Pharm Bull. 2013;36(11):1835-41. doi: 10.1248/bpb.b13-00554. Epub 2013 Aug 28.
7
The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins.
Mol Microbiol. 1995 Jul;17(1):25-35. doi: 10.1111/j.1365-2958.1995.mmi_17010025.x.
8
MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria.
J Hazard Mater. 2020 Apr 15;388:122062. doi: 10.1016/j.jhazmat.2020.122062. Epub 2020 Jan 9.
9
Lack of involvement of merT and merP in methylmercury transport in mercury resistant Pseudomonas K-62.
FEMS Microbiol Lett. 1995 May 15;128(3):301-6. doi: 10.1111/j.1574-6968.1995.tb07540.x.

引用本文的文献

1
Biomolecular mechanisms for signal differentiation.
iScience. 2021 Nov 17;24(12):103462. doi: 10.1016/j.isci.2021.103462. eCollection 2021 Dec 17.
2
Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms.
Front Bioeng Biotechnol. 2018 Oct 29;6:157. doi: 10.3389/fbioe.2018.00157. eCollection 2018.
3
Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon.
PLoS One. 2016 Jan 13;11(1):e0147036. doi: 10.1371/journal.pone.0147036. eCollection 2016.
5
Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression.
PLoS One. 2013;8(3):e57860. doi: 10.1371/journal.pone.0057860. Epub 2013 Mar 5.
10
Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria.
Appl Environ Microbiol. 2005 Aug;71(8):4610-8. doi: 10.1128/AEM.71.8.4610-4618.2005.

本文引用的文献

2
The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins.
Mol Microbiol. 1995 Jul;17(1):25-35. doi: 10.1111/j.1365-2958.1995.mmi_17010025.x.
3
Culture medium for enterobacteria.
J Bacteriol. 1974 Sep;119(3):736-47. doi: 10.1128/jb.119.3.736-747.1974.
4
Efficient expression of the yeast metallothionein gene in Escherichia coli.
J Bacteriol. 1988 Jan;170(1):21-6. doi: 10.1128/jb.170.1.21-26.1988.
6
High efficiency transformation of E. coli by high voltage electroporation.
Nucleic Acids Res. 1988 Jul 11;16(13):6127-45. doi: 10.1093/nar/16.13.6127.
9
Expression of the pea gene PSMTA in E. coli. Metal-binding properties of the expressed protein.
FEBS Lett. 1991 Nov 4;292(1-2):48-52. doi: 10.1016/0014-5793(91)80831-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验