Möhlmann T, Tjaden J, Henrichs G, Quick W P, Häusler R, Neuhaus H E
Pflanzenphysiologie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrück, Germany.
Biochem J. 1997 Jun 1;324 ( Pt 2)(Pt 2):503-9. doi: 10.1042/bj3240503.
We recently developed a method of purifying amyloplasts from developing maize (Zea mays L.) endosperm tissue [Neuhaus, Thom, Batz and Scheibe (1993) Biochem. J. 296, 395-401]. In the present paper we analyse how glucose 6-phosphate (Glc6P) and other phosphorylated compounds enter the plastid compartment. Using a proteoliposome system in which the plastid envelope membrane proteins are functionally reconstituted, we demonstrate that this type of plastid is able to transport [14C]Glc6P or [32P]Pi in counter exchange with Pi, Glc6P, dihydroxyacetone phosphate and phosphoenolpyruvate. Glucose 1-phosphate, fructose 6-phosphate and ribose 5-phosphate do not act as substrates for counter exchange. Besides hexose phosphates, ADP-glucose (ADPGlc) also acts as a substrate for starch synthesis in isolated maize endosperm amyloplasts. This process exhibits saturation kinetics with increasing concentrations of exogenously supplied [14C]ADPGlc, reaching a maximum at 2mM. Ultrasonication of isolated amyloplasts greatly reduces the rate of ADPGlc-dependent starch synthesis, indicating that the process is dependent on the intactness of the organelles. The plastid ATP/ADP transporter is not responsible for ADPGlc uptake. Data are presented that indicate that ADPGlc is transported by another translocator in counter exchange with AMP. To analyse the physiology of starch synthesis in more detail, we examined how Glc6P- and ADPGlc-dependent starch synthesis in isolated maize endosperm amyloplasts interact. Glc6P-dependent starch synthesis is not inhibited by increasing concentrations of ADPGlc. In contrast, the rate of ADPGlc-dependent starch synthesis is reduced by increasing concentrations of ATP necessary for Glc6P-dependent starch synthesis. The possible modes of inhibition of ADPGlc-dependent starch synthesis by ATP are discussed with respect to the stromal generation of AMP required for ADPGlc uptake.
我们最近开发了一种从发育中的玉米(Zea mays L.)胚乳组织中纯化造粉体的方法[Neuhaus, Thom, Batz和Scheibe(1993年)《生物化学杂志》296, 395 - 401]。在本文中,我们分析了6 - 磷酸葡萄糖(Glc6P)和其他磷酸化化合物如何进入质体区室。使用一种将质体包膜膜蛋白进行功能重建的蛋白脂质体系统,我们证明这种类型的质体能够以与磷酸(Pi)、Glc6P、磷酸二羟丙酮和磷酸烯醇丙酮酸进行反向交换的方式转运[14C]Glc6P或[32P]Pi。1 - 磷酸葡萄糖、6 - 磷酸果糖和5 - 磷酸核糖不作为反向交换的底物。除了己糖磷酸外,ADP - 葡萄糖(ADPGlc)在分离的玉米胚乳造粉体中也作为淀粉合成的底物。随着外源供应的[14C]ADPGlc浓度增加,这个过程呈现出饱和动力学,在2mM时达到最大值。对分离的造粉体进行超声处理会大大降低依赖ADPGlc的淀粉合成速率,这表明该过程依赖于细胞器的完整性。质体ATP/ADP转运体不负责ADPGlc的摄取。所呈现的数据表明,ADPGlc是由另一种转运体以与AMP进行反向交换的方式转运的。为了更详细地分析淀粉合成的生理学,我们研究了分离的玉米胚乳造粉体中依赖Glc6P和依赖ADPGlc的淀粉合成是如何相互作用的。依赖Glc6P的淀粉合成不会因ADPGlc浓度增加而受到抑制。相反,依赖ADPGlc的淀粉合成速率会因依赖Glc6P的淀粉合成所需的ATP浓度增加而降低。关于ADPGlc摄取所需的AMP在基质中的生成,讨论了ATP对依赖ADPGlc的淀粉合成的可能抑制模式。