Samdani A F, Dawson T M, Dawson V L
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Stroke. 1997 Jun;28(6):1283-8. doi: 10.1161/01.str.28.6.1283.
Cessation of blood flow to the brain, for even a few minutes, sets in motion a potential reversible cascade of events resulting in neuronal cell death. Oxygen free radicals and oxidants appear to play an important role in central nervous system injury after cerebral ischemia and reperfusion. Recently, divergent roles for the newly identified neuronal messenger molecule and oxygen radical, nitric oxide (NO), have been identified in various models of cerebral ischemia. Because of the chemical and physical properties of NO, the numerous physiological activities it mediates, and the lack of specific agents to modulate the activity of the different isoforms of NO synthase (NOS), reports regarding the role of NO in focal cerebral ischemia have been confounding and often conflicting. Recent advances in pharmacology and the development of transgenic knockout mice specific for the different isoforms of NOS have advanced our knowledge and clarified the role of NO in cerebral ischemia.
Animal models of focal ischemia employ occlusion of nutrient cerebral vessels, most commonly the middle cerebral artery. Primary cortical cultures are exposed to excitotoxic or ischemic conditions, and the activities of NOS isoforms or NO production are evaluated. Transgenic mice lacking expression of either the neuronal isoform of NOS (nNOS), the endothelial isoform of NOS (eNOS), or the immunologic isoform of NOS (iNOS) have been examined in models of excitotoxic injury and ischemia.
Excitotoxic or ischemic conditions excessively activate nNOS, resulting in concentrations of NO that are toxic to surrounding neurons. Conversely, NO generated from eNOS is critical in maintaining cerebral blood flow and reducing infarct volume. iNOS, which is not normally present in healthy tissue, is induced shortly after ischemia and contributes to secondary late-phase damage.
Pharmacological and genetic approaches have significantly advanced our knowledge regarding the role of NO and the different NOS isoforms in focal cerebral ischemia. nNOS and iNOS play key roles in neurodegeneration, while eNOS plays a prominent role in maintaining cerebral blood flow and preventing neuronal injury.
大脑血流中断即使仅几分钟,也会引发一系列潜在的可逆性事件,最终导致神经元细胞死亡。氧自由基和氧化剂似乎在脑缺血及再灌注后的中枢神经系统损伤中发挥重要作用。最近,在各种脑缺血模型中,新发现的神经元信使分子及氧自由基——一氧化氮(NO)发挥了不同作用。由于NO的化学和物理性质、其介导的众多生理活动,以及缺乏调节不同亚型一氧化氮合酶(NOS)活性的特异性药物,关于NO在局灶性脑缺血中作用的报道一直令人困惑且常常相互矛盾。药理学的最新进展以及针对不同NOS亚型的转基因敲除小鼠的培育,增进了我们的认识,明确了NO在脑缺血中的作用。
局灶性缺血动物模型采用阻断脑营养血管,最常见的是大脑中动脉。将原代皮质培养物暴露于兴奋毒性或缺血条件下,评估NOS亚型的活性或NO的生成。已在兴奋毒性损伤和缺血模型中对缺乏神经元型NOS(nNOS)、内皮型NOS(eNOS)或免疫型NOS(iNOS)表达的转基因小鼠进行了研究。
兴奋毒性或缺血条件会过度激活nNOS,导致产生对周围神经元有毒性的NO浓度。相反,由eNOS产生的NO对于维持脑血流量和减少梗死体积至关重要。iNOS在健康组织中通常不存在,在缺血后不久被诱导产生,并导致继发性晚期损伤。
药理学和遗传学方法显著增进了我们对NO及不同NOS亚型在局灶性脑缺血中作用的认识。nNOS和iNOS在神经退行性变中起关键作用,而eNOS在维持脑血流量和预防神经元损伤方面发挥重要作用。