Schink B
Fakultät für Biologie, Universität Konstanz, Germany.
Microbiol Mol Biol Rev. 1997 Jun;61(2):262-80. doi: 10.1128/mmbr.61.2.262-280.1997.
Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms.
脂肪酸和醇类是有机物产甲烷降解过程中的关键中间体,例如在厌氧污水污泥消化器或淡水湖沉积物中。它们由典型的发酵细菌产生,用于处理在同时进行的底物氧化过程中产生的电子。产甲烷细菌主要只能降解一碳化合物。因此,乙酸盐、丙酸盐、乙醇及其高级同系物必须进一步发酵成一碳化合物。这些发酵被称为二次发酵或互营发酵。在标准条件下,它们是吸能过程,并且依赖于与产甲烷作用的紧密耦合。在这些过程中协同作用的原核生物的能量状况存在问题:底物完全转化为甲烷的反应中可利用的自由能分配给每个伙伴的能量处于最低生化可转化能量范围内,即每个反应每摩尔20至25千焦。这个量相当于三分之一的ATP单位,并且等同于一价离子穿过带电荷的细胞质膜所需的能量。最近的研究表明,互营发酵细菌通过底物水平磷酸化合成ATP,并将部分与ATP结合的能量重新投入到逆向电子传递过程中,以便在伙伴细菌可利用的氧化还原水平释放电子,并平衡它们的能量收支。这些发现使我们能够基于从其他微生物生物能量学中得出的概念来理解这些细菌的能量代谢。