Suppr超能文献

碱性自养条件下钢丝的厌氧腐蚀

Anaerobic corrosion of steel wire by under alkaline autotrophic conditions.

作者信息

Zavarzina Daria G, Chistyakova Natalia I, Kohout Jaroslav, Merkel Alexandr Yu, Perevalova Anna A, Kubaniova Denisa, Chernov Michail S, Frolov Evgeny N, Klyuev Alexey L, Gavrilov Sergey N

机构信息

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation.

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation.

出版信息

Appl Environ Microbiol. 2025 Apr 23;91(4):e0184824. doi: 10.1128/aem.01848-24. Epub 2025 Mar 10.

Abstract

Microbially induced corrosion (MIC), caused by iron-cycling microorganisms that directly uptake electrons from metallic iron, is a serious economic and environmental problem. Iron corrosion is inhibited at pH above 9.0 in the presence of carbonate by the formation of a passivating film, but the possibility of direct oxidation of metallic iron by anaerobic alkaliphiles has not been thoroughly investigated. This bioinduced process may pose a serious environmental hazard under anaerobic alkaline conditions of underground radioactive waste disposal in metal containers with bentonite clays. We used , an anaerobic iron-cycling bacterium capable of both dissimilatory iron reduction and anaerobic iron oxidation, as a model organism to investigate the microbial ability to utilize Fe from steel wire as an electron donor under anaerobic autotrophic conditions at pH 9.5. During bacterial growth, corrosion of the steel wire was induced and accompanied by intense H production and precipitation of a solid phase. Mössbauer spectroscopy revealed that green rust with siderite admixture was the major mineral formed during Fe oxidation. Protons appeared to be the only thermodynamically favorable electron acceptor for . Their reduction could lead to hydrogen production. Genomic analysis supported the proposal of such a metabolic mode for the organism. Thus, we have shown that MIC can be realized under anaerobic alkaline conditions by iron-cycling microorganisms in the absence of organic substrates. Microbial hydrogen production may facilitate the further development of authigenic microflora, which could further increase corrosion in radioactive waste repositories and reduce the barrier properties of bentonite clays.IMPORTANCEMicrobially induced corrosion (MIC) is a problem with significant economic damage. MIC processes occurring under anaerobic conditions at neutral pH have been actively studied over the last decades. Meanwhile, MIC processes under anaerobic alkaline conditions remain very poorly understood, although they represent a serious environmental problem, as such conditions are characteristic of the geological disposal of nuclear waste stored in metal containers isolated by clays. Our studies of the corrosion of steel by the anaerobic iron-cycling bacterium at pH 9.5 in the absence of any organic matter have shown that this process is possible and can be accompanied by the active release of hydrogen. The formation of this gas can trigger the development of an authigenic anaerobic microflora that uses it as an electron donor and can negatively affect the insulating properties of the clay barrier through microbial metabolic activity.

摘要

由能直接从金属铁摄取电子的铁循环微生物引起的微生物诱导腐蚀(MIC)是一个严重的经济和环境问题。在碳酸盐存在的情况下,pH高于9.0时,铁的腐蚀会因形成钝化膜而受到抑制,但厌氧嗜碱菌对金属铁直接氧化的可能性尚未得到充分研究。在含有膨润土的金属容器中进行地下放射性废物处置的厌氧碱性条件下,这种生物诱导过程可能会造成严重的环境危害。我们使用一种既能异化铁还原又能厌氧铁氧化的厌氧铁循环细菌,作为模型生物来研究其在pH 9.5的厌氧自养条件下利用钢丝中的铁作为电子供体的微生物能力。在细菌生长过程中,钢丝发生腐蚀,并伴有大量氢气产生和固相沉淀。穆斯堡尔光谱显示,含菱铁矿混合物的绿锈是铁氧化过程中形成的主要矿物。质子似乎是该细菌唯一热力学上有利的电子受体。它们的还原会导致氢气产生。基因组分析支持了该生物体这种代谢模式的提议。因此,我们已经表明,在没有有机底物的情况下,铁循环微生物可以在厌氧碱性条件下实现微生物诱导腐蚀。微生物产氢可能会促进自生微生物群落的进一步发展,这可能会进一步加剧放射性废物储存库中的腐蚀,并降低膨润土的阻隔性能。

重要性

微生物诱导腐蚀(MIC)是一个造成重大经济损失的问题。在过去几十年中,对中性pH厌氧条件下发生的MIC过程进行了积极研究。与此同时,厌氧碱性条件下的MIC过程仍然知之甚少,尽管它们代表了一个严重的环境问题,因为这种条件是储存在由粘土隔离的金属容器中的核废料地质处置的特征。我们对厌氧铁循环细菌在pH 9.5且无任何有机物的情况下对钢的腐蚀研究表明,这个过程是可能的,并且可能伴随着氢气的大量释放。这种气体的形成可以引发自生厌氧微生物群落的发展,该群落将其用作电子供体,并通过微生物代谢活动对粘土屏障的绝缘性能产生负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e4/12016550/709ae80333b4/aem.01848-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验