Suppr超能文献

种间电子载体 H(2)和甲酸盐在产甲烷生态系统中的扩散及其对测定 H(2)或甲酸盐摄取的 Km 值的影响。

Diffusion of the Interspecies Electron Carriers H(2) and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of K(m) for H(2) or Formate Uptake.

机构信息

Environmental Science and Engineering, Oregon Graduate Center, 19600 N.W. Von Neumann Drive, Beaverton, Oregon 97006-1999.

出版信息

Appl Environ Microbiol. 1989 Jul;55(7):1735-41. doi: 10.1128/aem.55.7.1735-1741.1989.

Abstract

We calculated the potential H(2) and formate diffusion between microbes and found that at H(2) concentrations commonly found in nature, H(2) could not diffuse rapidly enough to dispersed methanogenic cells to account for the rate of methane synthesis but formate could. Our calculations were based on individual organisms dispersed in the medium, as supported by microscopic observations of butyrate-degrading cocultures. We isolated an axenic culture of Syntrophomonas wolfei and cultivated it on butyrate in syntrophic coculture with Methanobacterium formicicum; during growth the H(2) concentration was 63 nM (10.6 Pa). S. wolfei contained formate dehydrogenase activity (as does M. formicicum), which would allow interspecies formate transfer in that coculture. Thus, interspecies formate transfer may be the predominant mechanism of syntrophy. Our diffusion calculations also indicated that H(2) concentration at the cell surface of H(2)-consuming organisms was low but increased to approximately the bulk-fluid concentration at a distance of about 10 mum from the surface. Thus, routine estimation of kinetic parameters would greatly overestimate the K(m) for H(2) or formate.

摘要

我们计算了微生物之间潜在的 H(2) 和甲酸盐扩散,并发现,在自然界中常见的 H(2) 浓度下,H(2) 扩散速度不够快,无法将产甲烷细胞分散开,以解释甲烷合成的速度,但甲酸盐可以。我们的计算基于分散在培养基中的单个生物体,这得到了丁酸降解共培养物的显微镜观察的支持。我们分离了一株专性培养的 S. wolfei,并在与 Methanobacterium formicicum 的共培养物中以丁酸为底物进行培养;在生长过程中,H(2) 浓度为 63 nM(10.6 Pa)。S. wolfei 含有甲酸脱氢酶活性(M. formicicum 也有),这允许在共培养物中进行种间甲酸盐转移。因此,种间甲酸盐转移可能是共营养的主要机制。我们的扩散计算还表明,消耗 H(2) 的生物体细胞表面的 H(2) 浓度较低,但在距离表面约 10 µm 处增加到约与主体流体浓度相同。因此,常规估计动力学参数会大大高估 H(2) 或甲酸盐的 K(m)。

相似文献

2
Stimulating Effect of on a Coculture of and .
Appl Environ Microbiol. 2022 Jul 12;88(13):e0039122. doi: 10.1128/aem.00391-22. Epub 2022 Jun 14.
3
A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei.
PLoS One. 2013;8(2):e56905. doi: 10.1371/journal.pone.0056905. Epub 2013 Feb 26.
4
Membrane Complexes of Involved in Syntrophic Butyrate Degradation and Hydrogen Formation.
Front Microbiol. 2016 Nov 9;7:1795. doi: 10.3389/fmicb.2016.01795. eCollection 2016.
6
The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism.
Environ Microbiol. 2014 Jan;16(1):177-88. doi: 10.1111/1462-2920.12269. Epub 2013 Oct 6.
7
Kinetics of Formate Metabolism in Methanobacterium formicicum and Methanospirillum hungatei.
Appl Environ Microbiol. 1982 Sep;44(3):549-54. doi: 10.1128/aem.44.3.549-554.1982.
8
Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen.
Biotechnol Bioeng. 1996 Nov 5;52(3):404-11. doi: 10.1002/(SICI)1097-0290(19961105)52:3<404::AID-BIT6>3.0.CO;2-O.
9
Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture.
Environ Microbiol. 2017 Jul;19(7):2727-2739. doi: 10.1111/1462-2920.13774. Epub 2017 Jun 22.
10

引用本文的文献

3
Methanol transfer supports metabolic syntrophy between bacteria and archaea.
Nature. 2025 Mar;639(8053):190-195. doi: 10.1038/s41586-024-08491-w. Epub 2025 Jan 29.
5
Functionally redundant formate dehydrogenases enable formate-dependent growth in Methanococcus maripaludis.
J Biol Chem. 2024 Jan;300(1):105550. doi: 10.1016/j.jbc.2023.105550. Epub 2023 Dec 10.
7
The reduction of environmentally abundant iron oxides by the methanogen .
Front Microbiol. 2023 Jul 20;14:1197299. doi: 10.3389/fmicb.2023.1197299. eCollection 2023.
8
Role of biochar in anaerobic microbiome enrichment and methane production enhancement during olive mill wastewater biomethanization.
Front Bioeng Biotechnol. 2023 Jan 4;10:1100533. doi: 10.3389/fbioe.2022.1100533. eCollection 2022.
9
Role of pine needle biochar in operation and stability of anaerobic processes.
Biodegradation. 2023 Feb;34(1):53-71. doi: 10.1007/s10532-022-10004-3. Epub 2022 Nov 18.
10
Interspecies Formate Exchange Drives Syntrophic Growth of and Methanococcus maripaludis.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0115922. doi: 10.1128/aem.01159-22. Epub 2022 Nov 14.

本文引用的文献

2
Control of Interspecies Electron Flow during Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis.
Appl Environ Microbiol. 1988 Jan;54(1):10-19. doi: 10.1128/aem.54.1.10-19.1988.
3
Effects of pH, Temperature, and Nutrients on Propionate Degradation by a Methanogenic Enrichment Culture.
Appl Environ Microbiol. 1987 Jul;53(7):1589-92. doi: 10.1128/aem.53.7.1589-1592.1987.
4
Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.
Appl Environ Microbiol. 1987 Feb;53(2):434-9. doi: 10.1128/aem.53.2.434-439.1987.
7
Minimum threshold for hydrogen metabolism in methanogenic bacteria.
Appl Environ Microbiol. 1985 Jun;49(6):1530-1. doi: 10.1128/aem.49.6.1530-1531.1985.
9
Propionate exchange reactions in methanogenic ecosystems.
Appl Environ Microbiol. 1984 Oct;48(4):863-4. doi: 10.1128/aem.48.4.863-864.1984.
10
Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid.
Appl Environ Microbiol. 1984 Oct;48(4):840-8. doi: 10.1128/aem.48.4.840-848.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验