Meroni G, Reymond A, Alcalay M, Borsani G, Tanigami A, Tonlorenzi R, Lo Nigro C, Messali S, Zollo M, Ledbetter D H, Brent R, Ballabio A, Carrozzo R
Telethon Institute of Genetics and Medicine (TIGEM), San Raffaele Biomedical Science Park, Milan, Italy.
EMBO J. 1997 May 15;16(10):2892-906. doi: 10.1093/emboj/16.10.2892.
Proteins of the Myc and Mad family are involved in transcriptional regulation and mediate cell differentiation and proliferation. These molecules share a basic-helix-loop-helix leucine zipper domain (bHLHZip) and bind DNA at the E box (CANNTG) consensus by forming heterodimers with Max. We report the isolation, characterization and mapping of a human gene and its mouse homolog encoding a new member of this family of proteins, named Rox. Through interaction mating and immunoprecipitation techniques, we demonstrate that Rox heterodimerizes with Max and weakly homodimerizes. Interestingly, bandshift assays demonstrate that the Rox-Max heterodimer shows a novel DNA binding specificity, having a higher affinity for the CACGCG site compared with the canonical E box CACGTG site. Transcriptional studies indicate that Rox represses transcription in both human HEK293 cells and yeast. We demonstrate that repression in yeast is through interaction between the N-terminus of the protein and the Sin3 co-repressor, as previously shown for the other Mad family members. ROX is highly expressed in quiescent fibroblasts and expression markedly decreases when cells enter the cell cycle. Moreover, ROX expression appears to be induced in U937 myeloid leukemia cells stimulated to differentiate with 12-O-tetradecanoylphorbol-13-acetate. The identification of a novel Max-interacting protein adds an important piece to the puzzle of Myc/Max/Mad coordinated action and function in normal and pathological situations. Furthermore, mapping of the human gene to chromosome 17p13.3 in a region that frequently undergoes loss of heterozygosity in a number of malignancies, together with the biochemical and expression features, suggest involvement of ROX in human neoplasia.
Myc和Mad家族的蛋白质参与转录调控,介导细胞分化和增殖。这些分子共享一个碱性螺旋-环-螺旋亮氨酸拉链结构域(bHLHZip),并通过与Max形成异二聚体在E盒(CANNTG)共有序列处结合DNA。我们报告了一个人类基因及其小鼠同源基因的分离、鉴定和定位,该基因编码这个蛋白质家族的一个新成员,命名为Rox。通过相互作用交配和免疫沉淀技术,我们证明Rox与Max异二聚化,并且弱同二聚化。有趣的是,凝胶迁移实验表明,Rox-Max异二聚体显示出一种新的DNA结合特异性,与典型的E盒CACGTG位点相比,对CACGCG位点具有更高的亲和力。转录研究表明,Rox在人类HEK293细胞和酵母中均抑制转录。我们证明,酵母中的抑制作用是通过该蛋白质的N端与Sin3共抑制因子之间的相互作用实现的,正如之前在其他Mad家族成员中所显示的那样。ROX在静止的成纤维细胞中高度表达,当细胞进入细胞周期时表达明显降低。此外,在经12-O-十四酰佛波醇-13-乙酸酯刺激分化的U937髓样白血病细胞中,ROX表达似乎被诱导。一种新型Max相互作用蛋白的鉴定为Myc/Max/Mad在正常和病理情况下协调作用和功能的谜题增添了重要的一块。此外,将人类基因定位到17号染色体p13.3区域,该区域在许多恶性肿瘤中经常发生杂合性缺失,再加上其生化和表达特征,提示ROX参与人类肿瘤形成。