Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S
Università La Sapienza, Centro Acidi Nucleici CNR, Rome, Italy.
Oncogene. 1998 Nov 12;17(19):2463-72. doi: 10.1038/sj.onc.1202199.
bHLH and bHLHZip are highly conserved structural domains mediating DNA binding and specific protein-protein interactions. They are present in a family of transcription factors, acting as dimers, and their selective dimerization is utilized to switch on and off cell proliferation, differentiation or apoptosis. Myc is a bHLHZip protein involved in growth control and cancer, which operates in a network with the structurally related proteins Max, Mad and Mnt. It does not form homodimers, working as a heterodimer with Max; Max, instead, forms homodimers and heterodimers with Mad and Mnt. Myc/Max dimers activate gene transcription, while Mad/Max and Mnt/Max complexes are Myc/Max antagonists and act as repressors. Modifying the molecular recognition of dimers may provide a tool for interfering with Myc function and, in general, for directing the molecular switches operated via bHLH(Zip) proteins. By molecular modelling and mutagenesis, we analysed the contribution of single amino acids to the molecular recognition of Myc, creating bHLHZip domains with altered dimerization specificity. We report that Myc recognition specificity is encoded in a short region within the leucine zipper; mutation of four amino acids generates a protein, Omomyc, that homodimerizes efficiently and can still heterodimerize with wild type Myc and Max. Omomyc sequestered Myc in complexes with low DNA binding efficiency, preventing binding to Max and inhibiting Myc transcriptional activator function. Consistently with these results, Omomyc produced a proliferation arrest in NIH3T3 cells. These data demonstrate the feasibility of interfering with fundamental biological processes, such as proliferation, by modifying the dimerization selectivity of a bHLHZip protein; this may facilitate the design of peptides of potential pharmacological interest.
bHLH和bHLHZip是高度保守的结构域,介导DNA结合和特定的蛋白质-蛋白质相互作用。它们存在于一类转录因子中,以二聚体形式发挥作用,其选择性二聚化被用于开启和关闭细胞增殖、分化或凋亡。Myc是一种参与生长控制和癌症的bHLHZip蛋白,它在一个与结构相关蛋白Max、Mad和Mnt组成的网络中发挥作用。它不形成同二聚体,而是与Max形成异二聚体;相反,Max与Mad和Mnt形成同二聚体和异二聚体。Myc/Max二聚体激活基因转录,而Mad/Max和Mnt/Max复合物是Myc/Max拮抗剂,起阻遏作用。改变二聚体的分子识别可能为干扰Myc功能提供一种工具,一般来说,可为指导通过bHLH(Zip)蛋白进行的分子开关提供工具。通过分子建模和诱变,我们分析了单个氨基酸对Myc分子识别的贡献,创建了二聚化特异性改变的bHLHZip结构域。我们报告说,Myc识别特异性编码在亮氨酸拉链内的一个短区域;四个氨基酸的突变产生一种蛋白质,Omomyc,它能有效地同二聚化,并且仍然可以与野生型Myc和Max异二聚化。Omomyc将Myc隔离在DNA结合效率低的复合物中,阻止其与Max结合并抑制Myc转录激活功能。与这些结果一致,Omomyc在NIH3T3细胞中导致增殖停滞。这些数据证明了通过改变bHLHZip蛋白的二聚化选择性来干扰诸如增殖等基本生物学过程的可行性;这可能有助于设计具有潜在药理学意义的肽。