Suppr超能文献

心脏的解剖结构与电活动。

Anatomical architecture and electrical activity of the heart.

作者信息

Taccardi B, Lux R L, Ershler P R, MacLeod R, Dustman T J, Ingebrigtsen N

机构信息

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA.

出版信息

Acta Cardiol. 1997;52(2):91-105.

PMID:9187417
Abstract

In most early studies of cardiac electrophysiology, the correlation between propagation of excitation and the architecture of cardiac fibers was not addressed. More recently, it has become apparent that the spread of excitation, the sequence of recovery, the associated time-varying potential distributions and the intra- and extracardiac electrocardiograms are strongly affected by the complex orientation of myocardial fibers. This article is a review of older and very recent, partly unpublished, mathematical simulations and experimental findings that document the relationships between cardiac electrophysiology and fiber structure. Important anatomical factors that affect propagation and recovery are: the elongated shape of myocardial fibers which is the basis for electrical anisotropy; the epi-endocardial rotation of fiber direction in the ventricular walls; the epi-endocardial obliqueness of the fibers ("imbrication angle"), and the conduction system. Due to the complex architecture of the fibers, many different pathways are available to an excitation wavefront as it spreads from a pacing site: the straight line; the multiple, bent pathways resulting from the epi-endocardial rotation of fiber direction; the coiling intramural pathways associated with the "imbrication" angles (Streeter) and the pathways involving the Purkinje network. Only in a few cases is the straight line the fastest pathway. The shape of an excitation wavefront at a given time instant results from the competition between all possible pathways. To compute the potential distributions and ECG waveforms generated by a spreading excitation wave we must know the successive shapes and positions of the wavefront, the architecture of the fibers through which it propagates and the spatial distribution of their anisotropic electrical properties.

摘要

在大多数早期心脏电生理学研究中,并未探讨兴奋传播与心脏纤维结构之间的相关性。最近,有一点变得很明显,即兴奋的传播、恢复顺序、相关的时变电位分布以及心内和心外心电图都受到心肌纤维复杂取向的强烈影响。本文回顾了一些较早的以及非常新的(部分未发表的)数学模拟和实验结果,这些结果记录了心脏电生理学与纤维结构之间的关系。影响传播和恢复的重要解剖学因素包括:心肌纤维的细长形状,这是电各向异性的基础;心室壁中纤维方向的心外膜 - 心内膜旋转;纤维的心外膜 - 心内膜倾斜度(“叠瓦角”)以及传导系统。由于纤维结构复杂,当兴奋波前从起搏点传播时,有许多不同的路径可供其选择:直线;由纤维方向的心外膜 - 心内膜旋转产生的多条弯曲路径;与“叠瓦”角(斯特里特)相关的盘绕的壁内路径以及涉及浦肯野网络的路径。只有在少数情况下直线才是最快的路径。给定时刻兴奋波前的形状是所有可能路径之间竞争的结果。为了计算由传播的兴奋波产生的电位分布和心电图波形,我们必须知道波前的连续形状和位置、其传播所经过的纤维结构以及它们各向异性电特性的空间分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验