Suppr超能文献

p53和c-jun在膀胱移行细胞癌中的表达:与增殖细胞核抗原(PCNA)、组织学分级及临床分期的相关性

p53 and c-jun expression in urinary bladder transitional cell carcinoma: correlation with proliferating cell nuclear antigen (PCNA) histological grade and clinical stage.

作者信息

Skopelitou A, Hadjiyannakis M, Dimopoulos D, Kamina S, Krikoni O, Alexopoulou V, Rigas C, Agnantis N J

机构信息

Pathology Department of Medical School, University of Ioannina, Greece.

出版信息

Eur Urol. 1997;31(4):464-71. doi: 10.1159/000474508.

Abstract

OBJECTIVE

To investigate p53 and c-jun oncoproteins and proliferating cell nuclear antigen (PCNA) in transitional cell urinary bladder carcinomas (TCCs) and to determine their relationships to tumour grade, stage and survival.

MATERIALS AND METHODS

The expression of p53, c-jun and PCNA was studied using immunohistochemistry in formalin-fixed, paraffin-embedded tissues in a series of 110 TCCs.

RESULTS

58% of our cases were positive for p53 and 88% for c-jun. A statistically very significant correlation (p < 0.0001) was observed between p53 and c-jun (r = 0.781), p53 and PCNA (r = 0.772), c-jun and PCNA (r = 0.831) as well as between each of the two oncoproteins and the histological grade and clinical stage (p < 0.001). There was no correlation of either p53, PCNA or c-jun with clinical outcome in terms of patients survival.

CONCLUSION

p53 and c-jun proteins' overexpression are strongly related to rapid tumour cell proliferation and hence with aggressive growth in urinary bladder TCC. PCNA score remains an important prognostic index in transitional cell carcinoma of the bladder.

摘要

目的

研究p53和c-jun癌蛋白以及增殖细胞核抗原(PCNA)在膀胱移行细胞癌(TCC)中的表达情况,并确定它们与肿瘤分级、分期及生存率的关系。

材料与方法

采用免疫组织化学方法,对110例TCC经福尔马林固定、石蜡包埋的组织中p53、c-jun和PCNA的表达进行研究。

结果

我们的病例中58%的p53呈阳性,88%的c-jun呈阳性。观察到p53与c-jun(r = 0.781)、p53与PCNA(r = 0.772)、c-jun与PCNA(r = 0.831)之间以及这两种癌蛋白中的每一种与组织学分级和临床分期之间均存在统计学上非常显著的相关性(p < 0.0001)(p < 0.001)。就患者生存率而言,p53、PCNA或c-jun与临床结局均无相关性。

结论

p53和c-jun蛋白的过表达与肿瘤细胞的快速增殖密切相关,因此与膀胱TCC的侵袭性生长有关。PCNA评分仍然是膀胱移行细胞癌的一个重要预后指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验