Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Annu Rev Public Health. 2010;31:149-63. doi: 10.1146/annurev.publhealth.012809.103720.
Uncertainty in assessment of individual exposure levels leads to bias, often, but not always, toward the null in estimates of health effects, and to underestimation of the variability of the estimates, leading to anticonservative p-values. In the absence of data on the uncertainty in individual exposure estimates, sensitivity analysis, also known as uncertainty analysis and bias analysis, is available. Hypothesized values of key parameters of the model relating the observed exposure to the true exposure are used to assess the resulting amount of bias in point and interval estimates. In general, the relative risk estimates can vary from zero to infinity as the hypothesized values of key parameters of the measurement error model vary. Thus, we recommend that exposure validation data be used to empirically adjust point and interval estimates of health effects for measurement error. The remainder of this review gives an overview of available methods for doing so. Just as we routinely adjust for confounding, we can and should routinely adjust for measurement error.
评估个体暴露水平的不确定性会导致偏差,这种偏差通常(但并非总是)偏向于健康效应估计的零假设,并且会低估估计的可变性,导致保守的 p 值。在缺乏个体暴露估计不确定性数据的情况下,可以进行敏感性分析,也称为不确定性分析和偏差分析。使用与观察到的暴露与真实暴露相关的模型的关键参数的假设值来评估点估计和区间估计中产生的偏差量。一般来说,随着测量误差模型的关键参数的假设值的变化,相对风险估计值可以从零到无穷大变化。因此,我们建议使用暴露验证数据来根据测量误差对健康影响的点估计和区间估计进行实证调整。本综述的其余部分概述了可用于此目的的方法。就像我们通常会对混杂因素进行调整一样,我们可以而且应该经常对测量误差进行调整。