Suppr超能文献

使用贝叶斯因子对重复测量随机效应模型进行预测模型选择。

Predictive model selection for repeated measures random effects models using Bayes factors.

作者信息

Weiss R E, Wang Y, Ibrahim J G

机构信息

Department of Biostatistics, UCLA School of Public Health 90095-1772, USA.

出版信息

Biometrics. 1997 Jun;53(2):592-602.

PMID:9192454
Abstract

The random effects model fit to repeated measures data is an extremely common model and data structure in current biostatistical practice. Modern data analysis often involves the selection of models within broad classes of prespecified models, but for models beyond the generalized linear model, few model-selection tools have been actively studied. In a Bayesian analysis, Bayes factors are the natural tool to use to explore these classes of models. In this paper, we develop a predictive approach for specifying the priors of a repeated measures random effects model with emphasis on selecting the fixed effects. The advantage of the predictive approach is that a single predictive specification is used to specify priors for all models considered. The methodology is applied to a pediatric pain data analysis.

摘要

适用于重复测量数据的随机效应模型是当前生物统计学实践中极为常见的模型和数据结构。现代数据分析通常涉及在预先指定的广泛模型类别中选择模型,但对于广义线性模型之外的模型,很少有模型选择工具得到积极研究。在贝叶斯分析中,贝叶斯因子是用于探索这些模型类别的自然工具。在本文中,我们开发了一种预测方法来指定重复测量随机效应模型的先验,重点是选择固定效应。预测方法的优点是使用单一的预测规范来为所有考虑的模型指定先验。该方法应用于儿科疼痛数据分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验