Suppr超能文献

使用基于生理的机器人手臂和脊髓水平神经控制器对人体前臂姿势维持的研究。

Study of human forearm posture maintenance with a physiologically based robotic arm and spinal level neural controller.

作者信息

Chou P C, Hannaford B

机构信息

Department of Electrical Engineering, University of Washington, Seattle 98195-2500, USA.

出版信息

Biol Cybern. 1997 Apr;76(4):285-98. doi: 10.1007/s004220050340.

Abstract

The goals of this research are: (1) to apply knowledge of human neuro-musculo-skeletal motion control to a biomechanically designed, neural controlled, 'anthroform' robotic arm system, (2) to demonstrate that such a system is capable of responses that match those of the human arm reasonably well in comparable experiments, and (3) to utilize the anthroform arm system to study some controversial issues and to predict new phenomena of the human motion control system. A physiologically analogous artificial neural network controller and an anatomically accurate robotic testing elbow are applied in this study. In order to build the physical elbow system to have mechanical properties as close as possible to the human arm, McKibben pneumatic artificial muscles, force sensors, and mechanical muscle spindles are integrated in the system with anatomically accurate muscle attachment points. A physiologically analogous, artificial neural network controller is used to emulate the behavior of spinal segmental reflex circuitry including Ia and Ib afferent feedbacks. Systematic experiments of elbow posture maintenance are performed and compared with physiological experimental data. New experiments are performed in which responses to torque perturbation are measured when selected afferent pathways are blocked. A 'covariance diagram' is introduced. And a linear model is used to help to analyze the roles of system components. The results show that muscle co-contraction and Ia afference with gamma dynamic motoneuron excitation are two efficient ways to increase joint stiffness and damping, which in turn reduces the mechanical sensitivity of the joint to external perturbation and shortens the settling time of the system.

摘要

本研究的目标是

(1)将人类神经肌肉骨骼运动控制知识应用于一个经过生物力学设计、神经控制的“类人型”机器人手臂系统;(2)证明在可比实验中,这样的系统能够产生与人类手臂反应相当匹配的反应;(3)利用类人型手臂系统研究一些有争议的问题,并预测人类运动控制系统的新现象。本研究应用了生理上类似的人工神经网络控制器和解剖学上精确的机器人测试肘部。为了构建物理肘部系统,使其机械性能尽可能接近人类手臂,麦基布气动人工肌肉、力传感器和机械肌梭被集成到系统中,且肌肉附着点在解剖学上精确。使用生理上类似的人工神经网络控制器来模拟包括Ia和Ib传入反馈的脊髓节段反射回路的行为。进行了肘部姿势维持的系统实验,并与生理实验数据进行比较。进行了新的实验,在实验中测量了在选定传入通路被阻断时对扭矩扰动的反应。引入了“协方差图”。并使用线性模型来帮助分析系统组件的作用。结果表明,肌肉共同收缩以及Ia传入与γ动态运动神经元兴奋是增加关节刚度和阻尼的两种有效方法,这反过来又降低了关节对外部扰动的机械敏感性,并缩短了系统的稳定时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验