Suppr超能文献

Effects of clamp rise-time on rat brain IIA sodium channels in Xenopus oocytes.

作者信息

Ruben P C, Fleig A, Featherstone D, Starkus J G, Rayner M D

机构信息

Department of Biology, Utah State University, Logan 84322-5305, USA.

出版信息

J Neurosci Methods. 1997 May 16;73(2):113-22. doi: 10.1016/s0165-0270(96)02216-9.

Abstract

The kinetic properties of wild-type rat brain IIa sodium channels in excised macropatches were studied using step depolarizations and ramp depolarizations to imitate the slow settling-time of voltage in two-electrode voltage clamp. Ramp depolarizations longer than 1 ms produce an increasing suppression of peak sodium current (I[Na]). Two rates of inactivation can be seen in macroscopic sodium current records from excised patches following both step and ramp depolarizations. During slow ramp depolarizations, reduction in peak I[Na] is associated with selective loss of the fastest rate of test-pulse inactivation. This change can be interpreted as resulting from inactivation of a separate sub-population of 'fast mode' channels. The slow rate of test-pulse inactivation is relatively unaffected by changing ramp durations. These results are sufficient to explain the typically slow inactivation kinetics seen in two-electrode voltage clamp recordings of sodium channels in Xenopus oocytes. Thus, the kinetics of sodium channels expressed in Xenopus oocytes are not readily characterizable by two-electrode clamp because of the large membrane capacitance and resulting slow clamp settling time which artifactually selects for slow mode channels.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验