Suppr超能文献

海洋藻类中二甲基巯基丙酸内盐合成的新途径。

A new route for synthesis of dimethylsulphoniopropionate in marine algae.

作者信息

Gage D A, Rhodes D, Nolte K D, Hicks W A, Leustek T, Cooper A J, Hanson A D

机构信息

Department of Biochemistry, Michigan State University, East Lansing 48824, USA.

出版信息

Nature. 1997 Jun 26;387(6636):891-4. doi: 10.1038/43160.

Abstract

The 3-dimethylsulphoniopropionate (DMSP) produced by marine algae is the main biogenic precursor of atmospheric dimethylsulphide (DMS). This biogenic DMS, formed by bacterial and algal degradation of DMSP, contributes about 1.5 x 10(13) g of sulphur to the atmosphere annually, and plays a major part in the global sulphur cycle, in cloud formation and potentially in climate regulation. Although DMSP biosynthesis has been partially elucidated in a higher plant, nothing is known about how algae make DMSP except that the whole molecule is derived from methionine. Here we use in vivo isotope labelling to demonstrate that DMSP synthesis in the green macroalga Enteromorpha intestinalis proceeds by a route entirely distinct from that in higher plants. From methionine, the steps are transamination, reduction and S-methylation to give the novel sulphonium compound 4-dimethylsulphonio-2-hydroxybutyrate (DMSHB), which is oxidatively decarboxylated to DMSP. The key intermediate DMSHB was also identified in three diverse phytoplankton species, indicating that the same pathway operates in other algal classes that are important sources of DMS. The fact that a transamination initiates this pathway could help explain how algal DMSP (and thereby DMS) production is enhanced by nitrogen deficiency.

摘要

海洋藻类产生的3-二甲基巯基丙酸(DMSP)是大气中二甲基硫(DMS)的主要生物源前体。这种由细菌和藻类对DMSP进行降解而形成的生物源DMS,每年向大气中贡献约1.5×10¹³克硫,在全球硫循环、云的形成以及潜在的气候调节中发挥着重要作用。尽管高等植物中DMSP生物合成的过程已部分阐明,但除了整个分子来源于甲硫氨酸外,藻类如何合成DMSP尚不清楚。在此,我们利用体内同位素标记证明,绿藻浒苔中DMSP的合成途径与高等植物完全不同。从甲硫氨酸开始,经过转氨作用、还原反应和S-甲基化反应生成新型锍化合物4-二甲基巯基-2-羟基丁酸(DMSHB),DMSHB再经氧化脱羧反应生成DMSP。在三种不同的浮游植物物种中也鉴定出了关键中间体DMSHB,这表明相同的途径也存在于其他作为DMS重要来源的藻类类别中。转氨作用启动该途径这一事实,有助于解释缺氮是如何增强藻类DMSP(进而DMS)的产生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验