Fathollahi Y, Motamedi F, Semnanian S, Zardoshti M
Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
Brain Res. 1997 May 30;758(1-2):92-8. doi: 10.1016/s0006-8993(97)00164-9.
The early and long-lasting effects of pentylenetetrazol-kindling on hippocampal CA1 synaptic transmission were investigated. Experiments were carried out in the hippocampal slices from control and kindled rats at two post-kindling periods, i.e. 48-144 h (early phase) and 30-33 days (long-lasting phase). Field potentials, i.e. population excitatory postsynaptic potential (pEPSP) and population spike (PS) were recorded at the stratum pyramidale following stimulation of the stratum radiatum. Kindling-induced changes in synaptic transmission were assessed by stimulus-response functions and paired-pulse responses. The results showed that 48-144 h after kindling, the PS amplitude in the CA1 of kindled slices enhanced, and a second PS appeared compared to control slices. But at 30-33 days after kindling, the pEPSP slope in the CA1 of kindled slices enhanced without any change in the PS compared with those in the control slices. Evaluation of paired-pulse responses showed a significant reduction in paired-pulse inhibition for PS 48-144 h after kindling and a significant increase in paired-pulse inhibition for pEPSP 30-33 days after kindling. Our results suggest that pentylenetetrazol-kindling is accompanied by enhanced excitability and a reduction of paired-pulse inhibition in hippocampal CA1. The increased paired-pulse inhibition one month after kindling, may be interpreted as an adaptive process to cope with subsequent seizures.