Suppr超能文献

视觉刺激会在龟的大脑皮层中诱发电活动波。

Visual stimuli induce waves of electrical activity in turtle cortex.

作者信息

Prechtl J C, Cohen L B, Pesaran B, Mitra P P, Kleinfeld D

机构信息

Marine Biological Laboratory, Woods Hole, MA 02453, USA.

出版信息

Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7621-6. doi: 10.1073/pnas.94.14.7621.

Abstract

The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334-337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of approximately pi/2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing.

摘要

处理视觉场景所涉及的计算总是涉及整个视觉皮层中神经元之间的相互作用。一种假设是,神经元活动的时间以及活动的幅度提供了一种编码物体特征的方式。来自对猫的研究的实验数据[格雷,C.M.,柯尼希,P.,恩格尔,A.K.和辛格,W.(1989年)《自然》(伦敦)338卷,334 - 337页]支持这样一种观点,即只有同步(无相移)活动携带有关视觉场景的信息。相比之下,理论研究一方面表明神经元群体内多个相位作为编码独立视觉特征的一种方式的效用,另一方面表明仅基于网络动力学可能存在时间差异。在这里,我们结合使用宽场成像和电压敏感染料来记录来自几乎完整、未麻醉的龟脑的电活动。我们的数据由单次试验测量组成。我们在频域中分析数据以分离位于不同频带的相干事件。在持续活动和视觉刺激诱发的活动中都可以看到低频振荡(<5赫兹)。这些振荡平行于传入输入传播。仅在对刺激的响应中可以看到具有接近10和20赫兹频谱峰值的高频活动。这种活动由平面波和螺旋状波以及更复杂的模式组成。平面波具有大约π/2弧度/毫米的平均相位梯度,并与低频波正交传播。我们的结果表明,在视觉处理过程中存在大规模的神经元时间差异并且这种差异持续存在。

相似文献

10

引用本文的文献

4
Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex.长波长血管运动行波调节皮质灌注。
Neuron. 2024 Jul 17;112(14):2349-2367.e8. doi: 10.1016/j.neuron.2024.04.034. Epub 2024 May 22.
7
How far neuroscience is from understanding brains.神经科学距离理解大脑还有多远。
Front Syst Neurosci. 2023 Oct 5;17:1147896. doi: 10.3389/fnsys.2023.1147896. eCollection 2023.

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验