Suppr超能文献

Interactions of radiofrequency radiation-induced hyperthermia and 2-methoxyethanol teratogenicity in rats.

作者信息

Nelson B K, Conover D L, Krieg E F, Snyder D L, Edwards R M

机构信息

Division of Biomedical and Behavioral Science, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, USA.

出版信息

Bioelectromagnetics. 1997;18(5):349-59. doi: 10.1002/(sici)1521-186x(1997)18:5<349::aid-bem2>3.0.co;2-2.

Abstract

Radiofrequency (RF) radiation is used in a variety of workplaces. In addition to RF radiation, many workers are concurrently exposed to numerous chemicals; exposed workers include those involved with the microelectronics industry, plastic sealers, and electrosurgical units. The developmental toxicity of RF radiation is associated with the degree and duration of hyperthermia induced by the exposure. Previous animal research indicates that hyperthermia induced by an elevation in ambient temperature can potentiate the toxicity and teratogenicity of some chemical agents. We previously demonstrated that combined exposure to RF radiation (10 MHz) and the industrial solvent, 2-methoxyethanol (2ME), produces enhanced teratogenicity in rats. The purpose of the present research is to determine the effects of varying the degree and duration of hyperthermia induced by RF radiation (sufficient to maintain colonic temperatures at control [38.5], 39.0, 40.0, or 41.0 degrees C for up to 6 h) and 2ME (100 mg/kg) administered on gestation day 13 of rats. Focusing on characterizing the dose-response pattern of interactions, this research seeks to determine the lowest interactive effect level. Day 20 fetuses were examined for external and skeletal malformations. The results are consistent with previous observations. Significant interactions were observed between 2ME and RF radiation sufficient to maintain colonic temperatures at 41 degrees C for 1 h, but no consistent interactions were seen at lower temperatures even with longer durations. These data indicate that combined exposure effects should be considered when developing both RF radiation and chemical exposure guidelines and intervention strategies.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验