Wendling F, Bellanger J J, Badier J M, Coatrieux J L
Laboratoire Traitement du Signal et de L'Image, INSERM CJF 93-04, Université de Rennes, France.
IEEE Trans Biomed Eng. 1996 Oct;43(10):990-1000. doi: 10.1109/10.536900.
In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG) signals recorded with depth electrodes provides major information on interactions between brain structures during seizures. A comprehensive methodology of comparing SEEG seizure recordings is presented. It proceeds in three steps: 1) segmentation of SEEG signals; 2) characterization and labeling of segments; and 3) comparison of observations coded as sequences of symbol vectors. The third step reports a vectorial extension of the Wagner and Fischer's algorithm to first, quantify similarities between observations and second, extract invariant sequences of events, referred to as spatiotemporal signatures. The study shows that two observations of nonequal duration can be matched by deforming the first one to optimally fit the second, under cost constraints. Results show that the methodology allows to exhibit signatures occurring during epileptic seizures and to point out different types of seizure patterns. The study brings objective results on reproducible interactions between brain structures during ictal periods and may help in the understanding of epileptogenic networks.
在癫痫领域,对通过深度电极记录的立体脑电图(SEEG)信号进行分析,可提供有关癫痫发作期间脑结构间相互作用的主要信息。本文提出了一种比较SEEG癫痫发作记录的综合方法。该方法分三步进行:1)SEEG信号分割;2)片段的特征描述与标记;3)对编码为符号向量序列的观测值进行比较。第三步报告了瓦格纳和费舍尔算法的向量扩展,首先用于量化观测值之间的相似性,其次用于提取事件的不变序列,即时空特征。研究表明,在成本约束下,通过对第一个观测值进行变形以使其最佳拟合第二个观测值,两个时长不等的观测值可以匹配。结果表明,该方法能够展现癫痫发作期间出现的特征,并指出不同类型的发作模式。该研究为发作期脑结构之间可重复的相互作用带来了客观结果,可能有助于理解致痫网络。